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Abstract. We show that equivalence in finite-variable infinitary logic with rank operators can be
characterised in terms of pebble games based on set partitions. This gives us a game-based method for
proving lower bounds for FOR and IFPR, the extensions of first-order and fixed-point logic with rank
operators, respectively. As an illustration of the game method, we establish that over finite structures,
IFPR

[2]
p 6= IFPR

[2]
q for distinct primes p and q, where IFPR

[m]
p is the restriction of IFPR that only has

operators for defining rank of matrices of arity at most m over GFp.

1 Introduction

The question of whether there is a logical characterisation of the complexity class PTIME remains the
fundamental open problem of descriptive complexity. Most attempts to answer this question have focused on
finding suitable extensions of first-order logic that can describe exactly all properties decidable in PTIME. In
this way, Immerman and Vardi independently showed that on inputs equipped with a linear order, inflationary
fixed-point logic (IFP) expresses exactly the properties in PTIME [6, 9]. In the absence of an order, IFP is too
weak to express all properties in PTIME. In particular, it fails to define very simple cardinality properties.
This immediate deficiency is easily solved by extending the logic with counting terms, which gives us fixed-
point logic with counting (IFPC), which was at one time conjectured to be a logic for PTIME. However,
Cai, Fürer and Immerman later showed that this logic still falls short of capturing PTIME [2].

Since the result of Cai et al., a number of examples have been constructed of polynomial-time decidable
properties that are not expressible in IFPC. Recently it was observed that all these examples can be reduced
to the problem of determining the solvability of systems of linear equations (see [1, 3, 4]). Over finite fields, this
can be further reduced to the problem of computing the rank of a definable (unordered) matrix. Computing
rank can be understood as a generalised form of counting where, rather than counting the cardinality of a
definable set, one is allowed to count the dimension of a definable vector space. This suggests that the key
weakness of IFPC is that the form of counting it incorporates is too weak. In [4], Dawar et al. proposed
fixed-point logic with rank (IFPR), an extension of IFP with operators for computing the rank of a matrix
over a fixed prime field. It is shown in [4] that IFPR can express various polynomial-time properties known
to separate IFPC from PTIME. It is an open question whether IFPR captures PTIME.

Despite some positive results on the expressive power of logical rank operators, not much is known about
their limitations. For instance, it is not even known whether first-order logic with rank (FOR) is strictly less
expressive than IFPR over finite structures, although that would seem likely. To establish such separations
we seem to lack general methods for proving inexpressiblity in FOR and IFPR. This leads us to consider
variations of Ehrenfeucht-Fräıssé-style pebble games, which form an essential tool for analysing expressiveness
of other extensions of first-order logic, such as IFP and IFPC.

In this abstract we introduce a new pebble game based on set partitions that characterises expressivity in
an infinitary logic with rank quantifiers, which subsumes both FOR and IFPR. This type of game turns out
to be quite generic, with standard games for both IFP and IFPC occurring as special cases. As an illustration
of the game method, we establish that over finite structures, IFPR[2]

p 6= IFPR[2]
q for distinct primes p and q,

where IFPR[m]
p is the restriction of IFPR that only has operators for defining rank of matrices of arity at

most m over GFp. This partially resolves one of the open questions posed in [4]. Due to space constraints,
details of all proofs are omitted.



2 Rank Logics

We assume that all structures are finite and all vocabularies are finite and relational. For a logic L, we write
A ≡L B to denote that the structures A and B are not distinguished by any sentence of L. We write |A| for
the universe of a structure A and write ||A|| for the cardinality of |A|. We often denote tuples (v1, . . . , vk)
by v and denote their length by |v|.

Inflationary fixed-point logic (IFP) is obtained by adding to first-order logic the ability to define infla-
tionary fixed-points of inductive definitions. It is easily shown that on finite structures, IFP fails to express
very simple cardinality queries. We define counting terms #xϕ to denote the number of elements that satisfy
the formula ϕ. By adding to IFP rules for building counting terms, we obtain inflationary fixed-point logic
with counting (IFPC). For a detailed discussion of these logics we refer to the standard literature [5, 7].

Definable matrices over finite fields. We write [m] to denote the set {0, . . . , m−1}, for m ≥ 1. For sets
I and J , an I×J matrix over the prime field GFp can be seen as a function M : I×J → [p]. Here the rows of
M are indexed by I and the columns of M are indexed by J . Observe that the sets I and J are not necessarily
ordered. Natural matrix properties, such as singularity and rank, are invariant under permutations of rows
and columns, and are therefore well-defined in the context of unordered row and column sets.

Using our notation for describing matrices, a formula ϕ(x, y) interpreted in a structure A defines a GF2

matrix MA
ϕ : A|x| × A|y| → {0, 1} given by MA

ϕ (a, b) = 1 if, and only if, (A, a, b) |= ϕ. More generally, let
Φ = (ϕ1(x, y), . . . , ϕl(x, y)) be an l-tuple of formulas, with 1 ≤ l < p and p prime. Interpreted in a structure
A, these formulas define a matrix MA

Φ : A|x| ×A|y| → [p] given by

MA
Φ (a, b) =

l∑

i=1

iMA
ϕi

(a, b) (mod p).

For example, for any formula ϕ(x), the formula (x = y ∧ϕ(x)) interpreted in a structure A defines a square
diagonal matrix, with 1 in position (a, a) ∈ A×A on the diagonal if, and only if, (A, a) |= ϕ.

Fixed-point logic with rank. We recall the basic definition of rank logics. To simplify the transition to
infinitary rank logics later, our presention of rank operators differs slightly from that of Dawar et al. [4],
although the two definitions can be seen to be equivalent. Specifically, in [4] we consider matrices over GFp

defined by a single number term modulo p, instead of looking at tuples of formulas as we do below.
Inflationary fixed-point logic with rank (IFPR) has two sorts of variables: x1, x2, . . . ranging over the

domain elements of the structure, and ν1, ν2, . . . ranging over the non-negative integers. All quantification of
number variables has to be bounded. Thus, is if ν is a number variable, its binding quantifier must appear
in the form (∀ν ≤ t ϕ) or (∃ν ≤ t ϕ) for a numeric term t and a formula ϕ. In addition, we also have second-
order variables X1, X2, . . ., each of which has a type which is a finite string in {element, number}∗. Thus,
if X is a variable of type (element,number), it is to be interpreted by a binary relation relating elements
to numbers. We write ifpX←xν≤tϕ for the inflationary fixed-point of ϕ over the relation variable X of type
(element|x|, number|ν|), where the number variables in ν are bounded by the numeric terms in t. By closing
first-order logic under the formation of inflationary fixed-points, we get IFP in a two-sorted setting. The
logic IFPR is obtained by extending the formula-formation rules of IFP with a rule for building rank terms
in the following way:

for prime p and l ∈ {1, . . . , p− 1}, if Φ = (ϕ1(x, y), . . . , ϕl(x, y)) is an l-tuple of formulas and x and
y are tuples of variables of the first sort, then rkp(x,y)Φ is a term.

The intended semantics is that rkp(x,y)Φ denotes the rank (i.e. the member of the number sort) over GFp of
the matrix defined by the formulas Φ. More generally, we can define rank terms for formulas Φ with number
variables. In this case, all free number variables have to be bounded by number terms, as is described in
more detail in [4]. The arity of a rank operator rkp(x, y) is |x|+ |y|, where x and y are assumed to be tuples
of distinct variables.
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We write IFPR[m] for the fragment of IFPR in which all rank operators have arity at most m and write
IFPRp to denote the fragment where only rank operators rkp are allowed. Putting the two together, we
obtain logics IFPR[m]

p where only rank operators rkp of arity at most m are allowed.
It is easy to see that rank logics can express the cardinality of any definable set. Indeed, for a formula

ϕ(x) and prime p, the rank term rkp(x, y)(x = y∧ϕ(x)) is equivalent to the counting term #xϕ, as the rank
of a diagonal matrix is exactly the number of non-zero entries along the diagonal. This immediately implies
that each of the rank logics IFPRp is at least as expressive as IFPC.

Infinitary rank logics. For each natural number i and prime p, we consider a quantifier rki
p where A |=

rki
pxy (ϕ1, . . . , ϕp−1) if, and only if, the rank of the |A||x|×|A||y| matrix defined by (ϕ1(x,y), . . . , ϕp−1(x, y))

over A is i. Here the rank is taken over GFp. Let Rk denote k-variable infinitary logic with rank quantifiers.
The logic Rω is given by Rω =

⋃
k∈ω Rk. That is, Rω consists of infinitary rank formulas in which each formula

has only finitely many variables. We let Rk
p denote the sublogic of Rk where only rank quantifiers of the form

rki
p are allowed. We also write Rk;[m] and R

k;[m]
p to denote the fragments of Rk and Rk

p , respectively, with rank
quantifiers of arity at most m, where the arity of a quantifier rki

pxy is |x|+|y|. Clearly, m ≤ k. It can be shown

that every formula of IFPR[m]
p is equivalent to one of R

ω;[m]
p =

⋃
k∈ω R

k;[m]
p . Hence, IFPR ⊆ Rω. It is shown

in [4] that for any m ≥ 2, Rk;[m] is strictly less expressive than Rk;[m+1]. Hence also IFPR[m] ( IFPR[m+1].

3 Games for Logics with Rank

We give a game characterisation of equivalence in the logics R
k;[m]
p . To describe the game we will use the

following notation. Let I and J be finite sets, P a set partition of I × J , and γ : P → [p] a labeling of the
parts in P, with p prime. Then MP

γ denotes the I × J matrix over GFp defined by

MP
γ (i, j) = α ∈ [p] ⇔ ∃P ∈ P

(
(i, j) ∈ P ∧ γ(P ) = α

)
.

We first consider the game for R
k;[m]
p when m = 2. The game board of the k-pebble 2-ary rank partition

game over GFp consists of two structures A and B and k pairs of pebbles (ai, bi), 1 ≤ i ≤ k. The pebbles
a1, . . . , al are initially placed on the elements of an l-tuple s of elements in A, and the pebbles b1, . . . , bl on
an l-tuple t in B, l ≤ k. There are two players, Spoiler and Duplicator. At each round, Spoiler picks up two
pairs of corresponding pebbles (ai, bi) and (aj , bj) for some i and j. Duplicator has to respond by choosing
(a) partitions P of A×A and Q of B ×B, with |P| = |Q|; and (b) a bijection f : P → Q, such that for all
labelings γ : P → [p],

rkp(MP
γ ) = rkp(M

Q
f(γ)).

Here f(γ) : Q → [p] is the labeling of Q defined by f(γ)(Q) = γ(f−1(Q) for all Q ∈ Q. Spoiler next picks a
part P ∈ P, and places the pebbles (ai, aj) on an element in P ⊆ A × A and places the pebbles (bi, bj) on
an element in f(P ) ⊆ B×B. This completes one round in the game. If, after this exchange, the partial map
f : A → B given by ai 7→ bi is not a partial isomorphism, or Duplicator is unable to produce the required
partitions, then Spoiler has won the game; otherwise it can continue for another round.

For the more general case of m-ary rank quantifiers over GFp, we modify the above game so that at each
round, Spoiler starts by choosing two integers r and s with r + s = m. He then picks up m pebbles in some
order from A and the m corresponding pebbles in the same order from B. Duplicator has to respond by
choosing partitions P and Q of Ar × As and Br × Bs, respectively, and a bijection f : P → Q between
the two partitions. The rest of the round proceeds in exactly the same way as above, with Spoiler finally
choosing a part P ∈ P and placing the m pebbles in A on an element in P (in the order they were chosen
earlier) and the corresponding m pebbles in B on an element in f(P ) (in the same order). We denote the
k-pebble m-ary rank partition game over GFp played on structures A and B by Gk;[m]

p (A,B).

Theorem 1. Duplicator has a strategy for playing Gk;[m]
p (A,B) forever if, and only if, A ≡Rk;[m]

p B.
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Write Lk to denote k-variable infinitary logic and Ck to denote the extension of Lk with counting quantifiers
(see [7] for more details). The idea behind the rank partition game can also be used to give alternative
characterisations of the relations ≡Lk

and ≡Ck

. At each round in the k-pebble cardinality partition game on
A and B, the Spoiler picks up a pair of pebbles (ai, bi) for some i. Duplicator has to respond by choosing
(a) partitions P of A and Q of B, with |P| = |Q|; and (b) a bijection f : P → Q, such that for all parts
P ∈ P: |P | = |f(P )|. Spoiler then picks a part P ∈ P, and places ai on an element in P ⊆ A and places bi on
an element in f(P ) ⊆ B. This completes one round in the game. If Duplicator fails to produce the required
partitions or the partial map defined by the pebbled elements is not a partial isomorphism, then Spoiler
wins the game. Otherwise it can continue for another round. It can be shown that Duplicator has a strategy
to play this game forever if, and only if, A ≡Ck

B. Similarly, we can define the k-pebble partition game in
exactly the same way as above, except we drop the requirement that the corresponding parts have to have
the same size, i.e. Duplicator does not have to show that |P | = |f(P )| for all P ∈ P. It can be shown that
Duplicator has a strategy to play this game forever if, and only if, A ≡Lk

B. These two games can be seen
as special cases of the generic rank partition game, which of course reflects the fact that the corresponding
infinitary logics are both certain restrictions of infinitary rank logic.

4 Separation Results

The rank partition game can be used to delimit the expressive power of the rank logics restricted to a fixed
arity and prime p. Specifically, using the game, we can show the following.

Theorem 2. For all primes p and q where q ≡ 1 (mod p), there is a property of finite graphs which is
definable in FOR[2]

q but not in R
ω;[2]
p .

The basic idea of the proof is as follows. For all primes p and q where q ≡ 1 (mod p), and each k ≥ 2, we
construct a pair of non-isomorphic graphs (Aq

k,Bq
k) which can be separated by a sentence of FOR[2]

q . We

then show that Duplicator has a winning strategy in the game Gk;[2]
p (Aq

k,Bq
k), which shows that the classes

of graphs (Aq
k)k≥2 and (Bq

k)k≥2 are not definable in R
ω;[2]
p . The graphs (Aq

k,Bq
k) are based on a construction

of Torán [8]. This is essentially a way of encoding an arithmetic circuit modulo q into a given graph G. For
instance, for q = 2 we get the graphs defined by Cai et al. [2] used to separate IFPC from PTIME. By starting
with graphs G of large enough treewidth, we can ensure that for each k, Duplicator can hide the difference
between Aq

k and Bq
k when playing the k-pebble rank partition game. Note that q ≡ 1 (mod p) is required

only for technical reasons in the proof; we believe the same method can be generalised for all distinct primes
p and q. This gives us the following corollary, which partially resolves one of the open questions posed in [4].

Corollary 1. For all primes p and q where q ≡ 1 (mod p), IFPR[2]
p 6= IFPR[2]

q .
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2. J-Y. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables for graph identification.
Combinatorica, 12(4):389–410, 1992.

3. A. Dawar. On the descriptive complexity of linear algebra. In WoLLIC ’08, volume 5110 of LNCS, pages 17–25.
Springer, 2008.

4. A. Dawar, M. Grohe, B. Holm, and B. Laubner. Logics with rank operators. In Proc. 24th IEEE Symp. on Logic
in Computer Science, pages 113–122, 2009.

5. H. D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1999.
6. N. Immerman. Relational queries computable in polynomial time. Information and Control, 68:86–104, 1986.
7. M. Otto. Bounded Variable Logics and Counting — A Study in Finite Models, volume 9 of LNL. Springer, 1997.
8. J. Torán. On the hardness of graph isomorphism. SIAM Journal on Computing, 33(5):1093–1108, 2004.
9. M. Y. Vardi. The complexity of relational query languages. In Proc. of the 14th ACM Symp. on the Theory of

Computing, pages 137–146, 1982.

4


