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Constructing Elliptic Curves

with a Given Number of Points



Abstract. We describe how the theory of complex

multiplication can be used to construct elliptic curves

over a finite field with a given number of rational

points and illustrate how this method can be applied

to primality testing.
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1 Introduction

The study of computational number theory has answered many fundamental

questions on the theory of elliptic curves. In this essay we are concerned with

the following question:

Given a prime number p and a positive integer N , how can we construct an

elliptic curve defined over the finite field with p elements, having N rational

points?

This problem was originally solved by Atkin and Morain [2] in the 1980s, in

relation to the elliptic curve primality test of Goldwasser and Kilian. The method

that they developed draws upon such rich subjects in number theory as the

theory of complex multiplication and the class field theory of imaginary quadratic

fields. Their basic idea was to look at a class of elliptic curves over the finite

field Z/pZ, which can be constructed from certain class polynomials modulo

the prime number p. The hardest part of this method is the construction of

these class polynomials. In their original paper Atkin and Morain used direct

construction over the complex numbers, using floating point precision, but in

recent years some alternatives have been suggested. In 2000, Agashe et al. [1]

proposed the use of a modified Chinese Remainder Theorem to compute a class

polynomial modulo p directly from a set of smaller polynomials. More recently,

in 2004, Bröker and Stevenhagen [4] have presented an algorithm that works in

a non-archimedean setting rather than over the complex numbers.

The main body of this essay is structured into five sections. In Section 2 we

review the basics of quadratic forms, modular functions and imaginary quadratic

fields. Section 3 presents some of the theory of elliptic curves relevant to our

topic. We discuss general elliptic curves before turning our focus on curves over

the field of complex numbers and over finite fields. This theory will be used

in Section 4 when we derive the complex multiplication method for construct-

ing elliptic curves. In Section 5 we discuss a few different ways of generating

class polynomials, and lastly in section 6 we briefly describe how the complex

multiplication method can be applied to primality testing.

A few numerical examples are provided in the text to illustrate some of the

algorithms and procedures that we discuss. All non-trivial calculations were

carried out by the author using the PARI computer algebra package [3].
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Notation. We write Fq to denote the finite field with q elements, where q = pa

is a prime power. We denote by H the upper half complex plane, i.e. H = {α ∈
C | =α > 0}. If K is a field then we let K̄ be the algebraic closure of K.
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2 The Modular Invariant j

In this section we recall some basic definitions of quadratic forms and modular

functions. We start by looking at the j-invariant of a lattice in the complex

plane, in terms of the Weierstrass ℘-function, which then leads to the definition

of the elliptic j-function. Then we look at the imaginary quadratic extension

K = Q(
√
D), D < 0, and the relation with the set Cl(D) of reduced binary

quadratic forms. Lastly we present some important results about the Hilbert

class field of K and the associated class polynomial HD(X).

2.1 The Weierstrass ℘-Function

A lattice in the complex plane C is the set of all integral linear combinations of

two complex numbers that are linearly independent over R. We write L[ω1, ω2]

for the lattice L generated by the complex numbers ω1 and ω2. The Weierstrass

℘-function of L is defined by

℘(z) = ℘(z;L) =
1

z2
+

∑
l∈L\{0}

(
1

(z − 1)2
− 1

l2

)
(1)

We know from Koblitz [9, Chapter I, Proposition 6] that the above sum converges

absolutely and uniformly for z in any compact subset of C−L. The ℘-function is

an important example of an elliptic function, i.e. a doubly periodic meromorphic

function on C. In fact, every elliptic function defined for a lattice L can be

expressed as a rational function in ℘(z;L) and ℘′(z;L) (see [10, §1.2]). Elliptic

functions are closely related to elliptic curves, as we will see in §3.4. One can

show that ℘ satisfies the differential equation [9, §6]

℘′(z)2 = 4℘(z)3 − g2(L)℘(z)− g3(L), (2)

where g2(L) = 60
∑

ω∈L\{0} ω
−4 and g3(L) = 140

∑
ω∈L\{0} ω

−6 (and both sums

converge under the same assumption as ℘(z)). Associated with the lattice L is

the j-invariant j(L),

j(L) = 1728
g2(L)3

g2(L)3 − 27g3(L)2
= 1728

g2(L)3

∆(L)
. (3)

If L is a lattice then ∆(L) 6= 0, which means that the j(L) is always well defined
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[6, §10].

2.2 The j-Function

Let SL2(Z) denote the group of integer coefficient 2-by-2 matrices of determinant

1, i.e.

SL2(Z) =
{(

a b
c d

)
| a, b, c, d ∈ Z, ad− bc = 1

}
.

An element of SL2(Z) acts on a complex number τ by

(
a b
c d

)
τ = aτ+b

bτ+d .

A function f is said to be a modular form of weight 2k if it is meromorphic

everywhere in the upper half plane H and at infinity, and if for any τ in H it

satisfies the relation

f
((

a b
c d

)
τ
)

= f(τ) for all
(
a b
c d

)
∈ SL2(Z).

A modular form of weight 0 is generally called a modular function.

Now let Lτ be a lattice generated by 1, τ , where τ a complex number in the

upper half planeH. The j-function j(τ) is then defined in terms of the j-invariant

of Lτ by

j(τ) = j(Lτ ) = j([1, τ ]).

The complex functions g2(τ), g3(τ) and the modular discriminant ∆(τ) are de-

fined in a similar manner. The main properties of the j-function are given by the

following proposition [2, Proposition 3.1].

Proposition 2.1. The j-function is a modular function, holomorphic in the

upper half plane H, and has a simple pole at infinity.

Because the j-function is SL2(Z)-invariant, we have that

j(τ + 1) = j
((

1 1
0 1

)
τ
)

= j(τ),

which shows that j(τ) is periodic of period 1. Hence it has a Fourier expansion

which, if we write qτ = e2πiτ , is called the q-expansion of j. By Cox [6, Theorem
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11.8], we can write the q-expansion as

j(τ) =
1

qτ
+ 744 +

∞∑
m=1

cmq
m
τ ,

where τ ∈ H such that 0 < |qτ | < 1 and the coefficients cm are positive integers

for all m ≥ 1. Instead of working directly with this series it is usually better

to express j(τ) in terms of the Dedekind η-function, which is a modular form

defined by

η(τ) = q1/24
τ

∞∏
m=1

(1− qmτ ),

where, as before, qτ = e2πiτ . Because 0 < |qτ | < 1, this product converges for

any τ ∈ H. Using Euler’s identity

∞∏
m=1

(1− qm) =
∞∑

m=−∞
qm(3m+1)/2,

this product can be expanded as [2, §3.5]

η(τ) = q1/24
τ

(
1 +

∞∑
m=1

(−1)m(qm(3m−1)/2
τ + qm(3m+1)/2

τ )

)
. (4)

The η-function satisfies the functional equations [6, Corollary 12.19]

η(τ + 1) = ζ24η(τ), η(−τ−1) =
√
−iτη(τ), (5)

where ζ24 is the 24th root of unity in C. The modular discriminant of Lτ is

related to η by

∆(τ) = (2π)12η(τ)24. (6)

This implies that, if we set f(τ) = ∆(2τ)/∆(τ), we can compute j in terms of η

by the formula

j(τ) =
(256f(τ) + 1)3

f(τ)
. (7)

2.3 Quadratic Forms

An integral binary quadratic form [a, b, c] is a polynomial f(x, y) = ax2+bxy+cy2,

where a, b, c are integers. In this essay we will be working exclusively with
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integral binary quadratic forms and for simplicity we will write quadratic form

to mean just that. The discriminant of the quadratic form [a, b, c] is defined to

be D = b2 − 4ac. To each quadratic form F = [a, b, c] we associate a matrix

M(F ) =
( a b/2
b/2 c

)
. This allows us to define an equivalence relation: Two forms

F and F ′ of the same discriminant are (properly) equivalent (written F ∼ F ′) if

there exists A in SL2(Z) such that [6, §2]

M(F ′) = A−1M(F )A.

A quadratic form [a, b, c] is said to be primitive if gcd(a, b, c) = 1 and reduced if

it further satisifies

|b| ≤ a ≤ c and b ≥ 0 whenever |b| = a or a = c. (8)

Following Cohen [5, §5.3.1] we can define a reduced quadratic form in an alter-

native manner: Let f(x, y) = ax2 + bxy+ cy2 be a quadratic form and denote by

τ the root of f(x, 1) in the upper half plane H, i.e.

τ =
−b+

√
D

2a
. (9)

Then the quadratic form [a, b, c] is reduced if τ is in the domain

D = {τ ∈ H | <(τ) ∈ [−1
2 ,

1
2 [, |τ | > 1} ∪ {τ ∈ H | <(τ) ∈ [−1

2 ; 0], |τ | = 1}

As the complex number τ lies in the upper half plane H, we see that j(τ) is well

defined. When the context is clear, we write j([a, b, c]) to mean j(−b+
√
D

2a ). For

any quadratic number τ in H we define the discriminant of τ as the discriminant

of the unique primitive positive definite quadratic form [a, b, c] such that τ is a

root of ax2 + bx+ c = 0.

Now let Cl(D) denote the set of reduced quadratic forms of discriminant D

and let h(D) be its order. It follows from (8) that Cl(D) has finite order. The set

Cl(D) can be given the structure of an abelian group, under multiplication given

by a composition of equivalence classes. The inverse of the class of [a, b, c] in

Cl(D) is the class of [a,−b, c] and we say that a form is ambiguous if it has order

2 in Cl(D) [15]. It follows that an ambiguous binary quadratic is one among the
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types

[a, 0, c], [a, a, c], [a, b, a].

2.4 Hilbert Class Fields of Imaginary Quadratic Fields

An imaginary quadratic field is obtained by adjoining to the field of rationals the

square root of a fundamental discriminant D < 0.

Definition 2.1. An integer D is called a fundamental discriminant if D 6= 1 and

either D ≡ 1 (mod 4) and is square-free, or D ≡ 0 (mod 4), D/4 is square-free

and D/4 ≡ 2, 3 (mod 4).

Remark. Unless otherwise noted, we henceforth write D to mean a negative

fundamental discriminant.

If K = Q(
√
D) then dK , the discriminant of the field K, is exactly equal to D.

There is a one-to-one correspondence between Cl(D) and the set of classes of

fractional ideals of the unique quadratic field with discriminant D. Hence the

class number of the imaginary quadratic field Q(
√
−D = Q(

√
D) is equal to the

order h(D). An integral basis of K is given by (1, ω), where ω = D+
√
D

2 . It

follows that K has ring of integers OK = Z[ω] [2, §2.2]. The conjugates of
√
D in

K are the two imaginary numbers ±
√
D, hence K has no real embeddings and

one pair of complex embeddings into C. It follows from Dirichlet’s Unit Theorem

that O∗K ∼= µ(K), where O∗K is the group of units in K and µ(K) is the finite

cyclic group of roots of unity in K. When D = −3 then K contains ζ6 = 1+
√
−3

2 ,

a primitive sixth root of unity, and in the case D = −4, K contains ζ4 =
√
−1.

In the general case D < −4 the only roots of unity in K are ±1. These results

are summarised in the following Lemma.

Lemma 2.2. Let D < 0 be a fundamental discriminant and let OK be the ring

of integers of K = Q(
√
D). If we let $(D) denote the number of units in OK

then

$(D) =

{ 2 if D < −4

4 if D = −4

6 if D = −3

and the group of units in OK is equal to the $(D)th roots of unity in K.

Remark. This statement does in fact hold for an arbitrary order in K. Recall

that an order O in the quadratic field K is a subring of K, containing 1, which
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is a free Z-module of rank 2. The ring of integers OK is the maximal order in

K and the finite integer f = [OK : O] is called the conductor of O. It is easy to

show that the discriminant of O is D′ = f2dK , from which it follows that OK is

the unique order of discriminant D in K. This implies, of course, that any order

other than the maximal order can only have two units.

The Hilbert class field of K, which we denote by H, is the maximal unramified

abelian extension ofK, i.e. the composite of all the unramified abelian extensions.

The following Proposition, which we state without proof, relates the Hilbert class

field to values of the j-function at points in the upper half complex plane [2,

Theorem 3.2].

Theorem 2.3. Let K = Q(
√
D), where D is a negative fundamental discrimi-

nant. Then the Hilbert class field of K can be obtained by adjoining to K a value

of j([a, b, c]), where [a, b, c] ∈ Cl(D) is any one of the reduced quadratic forms of

discriminant D. The minimal polynomial of the j([a, b, c])’s, denoted by HD(X),

has integer coefficients. The Galois group Gal(H/K) is isomorphic to Cl(D),

and if f is an element of Cl(D) then we write σf to mean the corresponding

element in Gal(H/K). The action of σf on j is given by

σf (j(f)) = j(f−1 · f).

The minimal polynomial HD(X) is called the Hilbert class polynomial and we

refer to the equation HD(X) = 0 as the class equation. The class polynomial can

be expressed as

HD(X) =
∏

[a,b,c]∈Cl(D)

(
X − j(−b+

√
D

2a )
)
∈ Z[X]. (10)

It then follows that if τ is any quadratic number of discriminant D in H, then

j(τ) is an algebraic integer of degree exactly equal to h(D). If the discriminant

D is not divisible by 3, then j(τ) is a cube in H, up to a multiplication by a unit

in K [5, §7.2.4]. Furthermore, the norm of any j = j(τ) in H, which is precisely

the constant term of the class polynomial HD(X), is the cube of some rational

integer [2, Proposition 7.1]. This property will become useful for checking the

correctness of our calculations in §5.

Remark. The class polynomial can in general be defined for any integer D′ that
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occurs as the discriminant of some order O in K. Then the class polynomial of

O is HO(X) =
∏

(X − j(a)) where the product is over representatives a of each

ideal class of O. We also write HD′(X) to mean HO(X). Just as the zeroes of

the Hilbert class polynomial generate the Hilbert class field of K, the roots of

the class equation for an order of conductor f in K generate an abelian extension

Kf which is called the ring class field of K. In short, the ring class field Kf is

unramified outside f and any prime ideal of K not dividing f is totally split if

and only if it can be generated by an element which is in the congruence class of

rationals modulo f (see Cox [6]). The subject of ring class fields will be mostly

ignored in this essay, as all the algorithms that we will consider are limited to the

class of elliptic curves that have complex multiplication by the maximal order in

some imaginary quadratic field.

We finish this section with an important theorem that describes the behaviour

of certain rational primes in the Hilbert class field [2, Theorems 2.3 and 3.3].

Theorem 2.4. Let K = Q(
√
D) and let H be the Hilbert class field of K. Then,

if p is a rational prime, the following statements are equivalent.

(i) p is a norm in K.

(ii) (p) splits completely in H.

(iii) p splits as the product of two distinct elements in OK .

(iv) HD(X) modulo p splits completely into linear factors with roots in Fp.
(v) 4p = t2 + s2|D| has a solution in rational integers (x, y).
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3 Elliptic Curves

In this section we introduce the basic theory of elliptic curves relevant to our

topic. We start by recalling some definitions for curves given by Weierstrass

equations and then go on to discuss the group law and complex multiplication

over general fields. We then turn our attention to elliptic curves over the field

of complex numbers and over finite fields. The theory of elliptic curves over C
follows naturally from the discussion of lattices and the ℘-function in §2. Over

finite fields we will focus on the case of ‘ordinary’ elliptic curves, which relate

nicely to curves over C. Finally, we review some of the work of Deuring concerning

the reduction of elliptic curves, and state an important theorem that will provide

a basis for our derivation of the complex multiplication method in §4.

This section is intended only as an overview of some of the rich theory of

elliptic curves. For a more information on the subject, we refer to reader to

Silverman [16] and Koblitz [9], or any of the other references given in the text.

3.1 Basic Definitions

Let K be a field. An elliptic curve over K (written E/K) is a non-singular

projective plane cubic curve over K together with a distinguished point OE with

coordinates in K, called the “point at infinity”. The set of projective points which

are on the curve and have coordinates in K will be called the set of K-rational

points of E, denoted by E(K).

In this essay we will be working with elliptic curves over a field K of char-

acteristic different from 2 and 3. Such a curve can always be given by an affine

Weierstrass equation of the form

E : y2 = x3 + ax+ b (a, b ∈ K), (11)

the point OE taken over K as the point (x : y : z) = (0 : 1 : 0) in projective space

[5, §7.1.4]. For an elliptic curve E/K given by a Weierstrass equation, the set of

K-rational points can be written E(K) = {(x, y) ∈ K2 | y2 = x3+ax+b}∪{OE}.
Associated with the Weierstrass equation are quantities

∆ = −16(4a3 + 27b2), j = −1728(4a)3/∆, (12)

called the discriminant and j-invariant of the elliptic curve, respectively. A curve
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E is said to be singular if and only if ∆(E) = 0. By definition, elliptic curves are

non-singular.

Now let E(a, b) be shorthand notation for an elliptic curve with a Weierstrass

equation given by (11).

Theorem 3.1. Two elliptic curves E(a, b) and E(a′, b′) defined over K are iso-

morphic (over K̄) if and only if there exists a c ∈ K̄∗ such that a′ = c4a and

b′ = c6b, the isomorphism being under the map

(x, y) 7→ (c2x, c3y).

Proof. See [16, III, Proposition 3.1(b)], which gives a proof for elliptic curves

defined over general fields (whose characteristic may be 2 or 3).

Corollary. Two elliptic curves are isomorphic if and only if they have the same

j-invariant.

Proof. If E(a, b) and E(a′, b′) are isomorphic then it follows from formulas (12)

and Theorem 3.1 that they have the same j-invariant. On the other hand, if

the curves have the same j-invariant, we compute the relation a3b′2 = a′3b2 and

verify (splitting into cases a = 0, b = 0 and ab 6= 0) that there always exists a

c ∈ K̄∗ that satisfies Theorem 3.1.

Remark. From this corollary it is clear that the j-invariant of an elliptic curve

is an invariant of the isomorphism class of that curve (hence the name).

3.2 The Group Law

The set of points on an elliptic curve can be given the structure of an abelian

group, with a group law ⊕ defined by the following rule:

Let P and Q be points on the projective curve E, and let L be the line connecting

P and Q (a tangent line if P = Q), which intersects the curve in a third point

R. Then, if OE is the point at infinity on E, the sum P ⊕Q is the point so that

the line connecting OE and R intersects E in OE , R and P ⊕Q.

The group E(K) has neutral element OE . We note that the inverse of a point P

on E is the point 	P , such that P ⊕ (	P ) = OE . For further properties of the
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group law we refer to Silverman [16, III]. For an integer m and a point P on E,

we define multiplication by m by

[m]P = P ⊕ P ⊕ . . .⊕ P︸ ︷︷ ︸
m terms

(m > 0)

[0]P = OE

[m]P = [−m](	P ) (m < 0)

Explicit formulas for the group law are given by the following Theorem.

Theorem 3.2. Let E : y2 = x3 + ax + b be an elliptic curve. The inversion of

a point (x0, y0) on E is the point (x0,−y0), i.e. reflection in the x-axis. If P1 =

(x1, y1) and P2 = (x2, y2) ar two points on E, then the sum P1⊕P2 = (x3, y3) is

given by

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

where

λ =

{
(y2 − y1)(x2 − x1)−1 if x2 6= x1,

(3x2
1 + a)(2y1)−1 otherwise.

Proof. Follows from direct manipulation of plane coordinates.

3.3 Complex Multiplication

Let E and E′ be elliptic curves defined over a field K. An isogeny from E to E′

is a rational map from E to E′, sending the point OE on E to the point OE′ on

E′. If there exists a non-constant isogeny from E to E′, then we say that the

two curves are isogenous. The endomorphism ring of an elliptic curve E over a

field K is defined to be

EndK(E) = {isogenies φ : E → E, over K}

It is a ring with multiplication given by the composition (φψ)(P ) = φ(ψ(P )) and

addition given by (φ + ψ)(P ) = φ(P ) + ψ(P ), where φ and ψ are elements of

EndK(E) and P is a point on E. When E is defined over K, we write End(E)

to denote EndK̄(E), where K̄ is the algebraic closure of K. Fundamental to our
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study of the endomorphism ring is the multiplication-by-m map, defined for any

integer m by

[m] :
E → E

P 7→ [m](P )
(13)

where [m](P ) is defined as before. This map can be shown to be non-constant

(see e.g. Silverman [16, p.72]). We see that the maps [m] are elements of End(E),

and we get an injection Z ↪→ End(E). In most cases these maps are the only

elements, in which case End(E) ∼= Z because the maps are distinct. But if

End(E) is strictly larger than Z, then we say that E has complex multiplication.

Let φ : E → E′ be a non-constant isogeny over K and let K(E) and K(E′)

denote the function fields1 of E and E′ respectively. Then composition with φ

induces an injection of function fields:

φ∗ :
K(E′)→ K(E)

f 7→ f ◦ φ
(14)

We define the degree of φ as deg(φ) = [K(E) : φ∗(K(E′))] and we say that φ

is separable if the extension K(E)/φ∗(K(E′)) is separable. If φ : E → E′ is a

non-constant isogeny of degree m then there exists a unique isogeny φ̂ : E′ → E

such that φ̂◦φ = [m]. We call φ̂ the dual of φ (for existence, see [16, III, Theorem

6.1(b)]).

To classify the endomorpism ring for elliptic curves with complex multiplica-

tion, we need to recall some definitions. Let K be a number field and denote by

OK the ring of algebraic integers in K. By an order in K we mean a subring of

OK whose dimension over Z equals [K : Q]. We define a quaternion algebra over

K to be a central simple algebra of dimension four over K. We can now state:

Proposition 3.3. The endomorphism ring of an elliptic curve is (isomorphic to)

either Z, an order in a quaternion algebra or an order in an imaginary quadratic

field.

Proof. See Silverman [16, §III.9].

1The function field of E/K is the field of fractions of the coordinate ring K[E] =
K[X,Y ]/(y2 = x3 + ax + b), assuming char(K) 6= 2, 3.
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3.4 Elliptic Curves Over C

We observe that the Weierstrass equation (11) bears resemblance to the differ-

ential equation (2) for the Weierstrass ℘-function (in equation (11), set y′ = y/2

and multiply through by 4 to get a similar form). This is no coincidence. We

define a map from the complex torus C/L to the projective complex plane by

ψ: z 7→ (℘(z), ℘(z), 1) (if z 6= 0)

0 7→ (0 : 1 : 0)
(15)

We look at the equation ℘(z)−x = 0 and observe that it has (i) one solution for

the roots of 4x3−g2(L)x−g3(L) and the point at infinity, and the corresponding

y-coordinates are y = ℘′(z) = 0; (ii) two solutions in all other cases and the

corresponding y-coordinates are y = ±(4℘(z)3 − g2(L)℘(z)− g3(L))1/2.

In both cases a point z is sent to a point on the elliptic curve y2 = 4x3 −
g2(L)x−g3(L) in the complex projective plane, and the map ψ gives a one-to-one

correspondence between the torus C/L and the curve. Moreover, because both ℘

and ℘′ are analytic functions, the ψ is given by analytic functions near any point

in C/L [9, §6]. We have sketched a proof of the following theorem.

Theorem 3.4. Let L be a lattice in C. Then the map ψ defines a one-to-one

correspondence between C/L and the elliptic curve E : y2 = 4x3−g2(L)x−g3(L).

Let L be a lattice in C and define the set of complex numbers that stabilise

L as M(L) = {α ∈ C | αL ⊂ L}. Clearly M(L) contains Z and we say that

L has complex multiplication if M(L) is strictly larger than Z. If we let Eτ

denote the elliptic curve over C that corresponds to the lattice Lτ = [1, τ ], then

the endomorphism ring of Eτ is canonically isomorphic to M(Lτ ) [6, §14.B].

Specifically, Eτ has complex multiplication if and only if Lτ does. By Theorem 3.4

we know that Eτ is defined by a Weierstrass equation y2 = 4x3−g2(Lτ )x−g3(Lτ ).

We observe that the j-invariant of the curve is j(Eτ ) = 1728g2(Lτ )3/(g2(Lτ )3 −
27g3(Lτ )2) = j(τ), where j(τ) is a complex value of the j-function, which we

defined in §2.2. It follows from Theorem 2.3 that j(Eτ ) is an algebraic integer of

degree exactly equal to h(D), where D is the discriminant of τ , and that HD(X)

is the minimal polynomial of j(Eτ ). The final theorem we will need about elliptic

curves over C concerns the structure of the endomorphism ring.
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Theorem 3.5. Let E be an elliptic curve defined over C and assume that E has

complex multiplication. Then EndC(E) is an order in an imaginary quadratic

field.

Proof. An order in an imaginary quadratic field has the form Z + τZ, where

τ ∈ H is an algebraic integer of degree two. Let E be an elliptic curve defined

over C. We know that E ' C/L where L = L[ω1, ω2] is a lattice in C. After

division by one of its generators, say ω1, we can assume that L = Lτ for a certain

τ ∈ H. For all α ∈ M(L) there exist integers a, b, c and d such that α = a + bτ

and ατ = c + dτ . This implies that α is an eigenvalue of the matrix
(
a b
c d

)
(for

eigenvector [1 τ ]T ), i.e. α satisfies the equation λ2 − (a + d)λ + ad − bc, and is

therefore an algebraic integer of degreee two.

Now as we assume that E has complex multiplication, it follows that the

extension K = Q(α) = Q(τ) is a quadratic imaginary extension of Q and End(E)

is an order in OK (M(L) is integral over Z), the ring of integers of K.

3.5 Elliptic Curves Over Finite Fields

We now look at elliptic curves over the prime field Fp, where p > 3 is a prime

number. Over Fp, we can consider the projective line as the set Z/pZ plus

an extra “point at infinity”, containing p + 1 elements. Although we are only

interested in prime fields for our purpose of constructing elliptic curves with a

certain cardinality, some of the results we state in this section can apply to the

more general case Fq, where q = pa is a power of p.

If E is an elliptic curve defined over some field of characteristic p then we let

E(q) denote the curve that we get by raising each coefficient of the Weierstrass

equation for E to the qth power. It can easily be shown that E(q) is indeed an

elliptic curve. In fact, direct calculations reveal that ∆(E(q)) = ∆(E)q, which

implies that E(q) is singular if and only if E is singular. From this we define the

qth-power Frobenius morphism Fq:

Fq: E → E(q)

(x, y) 7→ (xq, yq)
(16)

When E is defined over Fq then this map is clearly an endomorphism of E,

sending every point (x, y) = (xq, yq) to itself. It can be shown that Fq /∈ Z (see

for example Silverman [16, §V.1, Theorem 3.1]), which imples that Z is always
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strictly larger than EndF̄q(E). This implies that all elliptic curves over finite

fields have complex multiplication and can thus be classified into two groups

based on the structure of their endomorphism ring:

Definition 3.1. Let E/Fq be an elliptic curve. Then E is said to be supersingular

if EndF̄q(E) is an order in a quaternion algebra and ordinary if EndF̄q(E) is an

order in an imaginary quadratic field.

If we write f(x) = x3 + ax + b, with a, b ∈ Fq, it is clear that for every x in Fq
there are at most two solutions y in Fq to the Weierstrass equation y2 = f(x).

Taking into consideration the point at infinity, the order of the group E(Fq) is

therefore clearly bounded above by 2q + 1. A classical theorem of Hasse gives a

more precise bound on the number of rational points.

Theorem 3.6. Let E be an elliptic curve defined over Fq. Then the order of the

group E(Fq) of Fq-rational points is an integer in the Hasse interval

Hq = [q + 1− 2
√
q, q + 1 + 2

√
q].

Proof. We briefly sketch the proof of this theorem. We will use the fact that the

map (1−Fq), where Fq is the qth power Frobenious map, is separable and hence

that deg(1−Fq) = | ker(1−Fq)|. The Frobenius endomorphism sends every point

P in E(Fq) to itself which implies that P is in E(Fq) if and only if P is in the

kernel of the map 1− Fq. Hence

|E(Fq)| = | ker(1− Fq)| = deg(1− Fq),

and the proof follows from a version of the Cauchy-Schwarz inequality for pos-

itive quadratic forms over abelian groups, using the fact that deg(Fq) = q (see

Silverman [16, §V.1, Theorem 1.1]).

Over the prime field Fp there is a simple criteria for E to be supersingular.

Theorem 3.7. Let E be an elliptic curve defined over Fp. Then E is supersin-

gular if and only if |E(Fp)| = p+ 1.

Proof. The proof of this theorem relies on the fact, which we state without proof,

that E is supersingular over Fp if and only if the dual Frobenius F̂p is purely

inseparable (see Silverman [16, V, Theorem 3.1(a)]). Let a be an integer such
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that [a] = Fp + F̂p, i.e. a = 1− deg(1− Fp) + deg(Fp) (here we use the property

that φ̂+ ψ = φ̂+ ψ̂). This implies that

|E(Fp)| = deg(1− Fp) = 1 + p− a.

But F̂p = [a] − Fp implies that F̂p is purely inseparable if and only if a = 0

modulo p.

We note that any rational point P in E(Fp) is annihilated by the group order

N = |E(Fp)|, i.e. [N ]P = OE [5, §9.2]. This fact can be used to check if a certain

curve has a given number of rational points, as we will see later.

3.6 The Deuring Lifting Theorem

Let K be a number field and let

E : y2 = x3 + ax+ b (a, b ∈ K),

be an elliptic curve over K. We are interested in the operation of reducing E

modulo a prime p of OK lying above p. We will denote the natural reduction map

by a tilde. If we can write a, b in the form r/s, where s /∈ p, then we can define

ã and b̃ as the images of a and b, respectively, in the finite field Fp , OK/p. If

∆ = −16(4ã3 + 27b̃2) 6= 0 then the curve Ẽ given by

Ẽ : y2 = x3 + ãx+ b̃,

defines an elliptic curve over Fp and p is said to be a “prime of good reduction”.

In the 1940s, Deuring developed a remarkable theory concerning the reduction of

elliptic curves. While the full statement of Deuring’s results is beyound the scope

of this essay, we will state without proof the following proposition, which defines

the behaviour of the endomorphism ring of an elliptic curve under reduction [10,

§5, Theorem 14].

Proposition 3.8 (Deuring Lifting Theorem). Let E be an elliptic curve defined

over the prime field Fp, with a non-trivial endomorphism ψ. Then there exists an

elliptic curve E′ defined over a number field K, an endomorphism ψ′ of E′, and

a good reduction Ẽ of E′ at a place p lying above p, such that Ẽ′ is isomorphic

to E and ψ̃′ corresponds to ψ under the isomorphism.
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We get an immediate corollary:

Corollary. With notation as above, reduction induces an isomorphism

EndK̄(E) ∼= EndF̄p(Ẽ),

which preserves degrees.

K : E′

reduce

  A
AA

AA
AA

Fp : E

lift
??�������� ∼= Ẽ′

Now consider an elliptic curve E over C, with

complex multiplication by an order OD, of dis-

criminant D, in a quadratic imaginary field K.

According to Proposition 3.8 there is some en-

domorphism π ∈ EndC(E) which corresponds to

Fp ∈ EndF̄p(Ẽ) under reduction modulo p. Since the reduction preserves degrees,

deg(π) = deg(Fp) = p. The degree of the complex number π ∈ OD is simply its

norm in K, so N(π) = ππ̄ = p, i.e. p splits as the product of two elements in

OD.

Now look at the group of rational points E(Fp). We have seen that the

Frobenius endomorpishm Fp acts trivially on points in Fp. In other words, P is

in E(Fp) if and only if Fp(P ) = P . This implies that

|E(Fp)| = |ker(1− Fp)|

= deg(1− Fp) � By proof of Theorem 3.6

= deg(1− π) � Reduction map preserves degrees

= (1− π)(1− π̄) � N(π)

= 1 + p− (π + π̄) � p = ππ̄

= 1 + p− Tr(π)

These results are summarised by the following theorem [5, §7.2.4].

Theorem 3.9. Let E be an elliptic curve with complex multiplication by an

imaginary quadratic order OD of discriminant D, and let p be a prime number

that splits into a product of two prime elements in OD, say p = ππ̄ where π ∈ OD.

Then, for a suitable choice of π, |Ẽ(Fp)| = p+ 1− t, where t = (π + π̄).

The question of a “suitable choice of π” is important in this context. If u is a

unit in OD, then N(uπ) = N(π) = p, but (uπ + uπ) 6= (π + π̄) in general. In
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§2.4 we counted the number of units in the unique imaginary quadratic order of

discriminant D, which we denote by $(D). It can be shown that for each D there

exist $(D) isomorphism classes of elliptic curves having complex multiplication

by OD. What remains is to find the explicit equation of the elliptic curves in

each case.

In the general case D < −4 the two units in OD are ±1. This implies that an

“incorrect” choice of π gives an opposite value of t in Theorem 3.9. If j0 6= 0, 1728

(mod p) is a j-invariant corresponding to the order of discriminant D, then we

set k = j0/(1728− j0) and choose one of the two elliptic curves defined by

y2 = x3 + 3kx+ 2k (17)

y2 = x3 + 3kc2x+ 2kc3 (c ∈ Fp and not a square). (18)

One of these curves will have p + 1 − t rational points and the other will have

p+ 1 + t points.

The special cases D = −3,−4 are a bit more involved. Atkin and Morain [2,

§8.6.2] give complete algorithms for finding the proper equations in each case.

We follow Cohen [5, §9.2] and let g denote a value of Fp such that g(p−1)/l 6= 1

for each prime l dividing $(D). Then the isomorphism classes of elliptic curves

with complex multiplication by OD are given by the equations

y2 = x3 − gkx (0 ≤ k ≤ 3) when D = −4 (19)

y2 = x3 − gk (0 ≤ k ≤ 5) when D = −3. (20)
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4 Constructing Elliptic Curves

Now that we have presented the relevant theory of elliptic curves, j-functions and

quadratic fields, it is time that we look at the task of constructing elliptic curves

with a certain number of points over a prime field. In this section we will present

a general method for such construction, which is based on the theory of complex

multiplication and the class field theory of imaginary quadratic fields. We will

refer to this simply as the complex multiplication method, or ‘CM method’ for

short.

We begin this section by briefly describing a trivial “brute force” procedure

for finding an elliptic curve with a given cardinality. Next we present the CM

method and discuss computational complexity and other practical aspects. The

main step of the CM method, constructing the class polynomial for discriminant

D, will be covered in detail in §5.

4.1 Naive Method

A naive method to produce an elliptic curve with N rational points in Fp is to

randomly pick an element a ∈ Fp\{−27
4 } and try whether the elliptic curve

Ea : y2 = x3 + ax− a

has N rational points. We observe that the point point P = (1, 1) is on Ea for

all a. By writing N = p + 1 − t, we check whether P is annihilated by either

N = p+1−t or N ′ = p+1+t. If it is, then we know that Ea has p+1±t rational

points. If P was annihilated by N then we are finished but if it was annihilated

by N ′ then we take the quadratic “twist” of Ea by equation (17). The procedure

Naive-Method(p,N) illustrates this method.
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Naive-Method(p,N)

1 P ← (1, 1)

2 t← p+ 1−N
3 i← 0

4 S ← Fp\{−27
4 }

5 repeat

6 Pick a random a ∈ S
7 Ea ← y2 = x3 + ax− a
8 if P is annihilated by p+ 1− t then

9 return Ea

10 elseif P is annihilated by p+ 1 + t then

11 return quadratic twist of Ea

12 end

13 S = S − {a}
14 until S = ∅

Although the distribution of group orders |Ea(Fp)| is not even among the ele-

ments a ∈ Fp, we can expect to check approximately O(
√
p) curves on average

before finding a right one. According to Bröker and Stevenhagen [4] the expected

running time of the naive algorithm is O(
√
p)× (constructing curve + multiply-

ing P + counting points) = O(N1/2+ε), for some small ε > 0. When N is small

it may be feasible to use the naive method. All the other alternatives we will

discuss in this essay are only assymptotically faster in N and may very well be

slower for small inputs. However for large N , say N � 1010, the naive method

becomes quite impractical.

4.2 Complex Multiplication Method

By the Deuring Lifting Theorem we can consider every elliptic curve over Fp
as the reduction of some elliptic curve over a number field K with the same

endomorphism ring. Our task is to construct a curve having exactly N rational

points over Fp.
Let K be the imaginary quadratic field of discriminant D where p splits as

the product of two elements. If we look at elliptic curves over K with complex

multiplication by the full ring of integers OK in K then we are able to apply

Theorem 3.9 which immediately gives us the desired cardinality over Fp. To
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find such a field K we choose a fundamental discriminant D < 0 such that

4p = t2 + s2|D| has a solution for t = p + 1 − N and s any integer. Then, by

Theorem 2.4, (p) splits into two distinct ideals in K. In other words, p is a norm

in K and p = ππ, where π is an element of OK . If we next find the equation of an

elliptic curve E over C with EndC(E) ' OK then by Theorem 3.9 the reduction

of E modulo p will give us a curve with p + 1 − t = N rational points over Fp.
We know that j(E) is an algebraic integer of degree equal to h(D), the class

number of K. By Theorem 2.4 we know that our choice of D implies that the

minimal polynomial HD(X) of j(E) splits completely into linear factors modulo

p. This allows us to consider a root of HD(X) ≡ 0 (mod p) as the j-invariant of

Ẽ, the reduction of E modulo p. We finally construct Ẽ by the formulas given

in §3.6 and that solves our task. The interaction of theory which underlies the

CM method is further illustrated in the following diagram.

Fundamental discriminant D < 0 such
that 4p = t2 + s2|D|. τ is a com-
plex number corresponding to a re-
duced quadratic form of discriminant
D.

Eτ/C has CM by OK in K =
Q(
√
D). The minimal polyno-

mial of j(Eτ ) is HD(X), which
splits into linear factors modulo
p.

p splits into a product of
two elements in OK , i.e.
p = ππ, π ∈ OK .

One solution of HD(X) ≡ 0 (mod p)
is the j-invariant of an elliptic curve Ẽ
over Fp with CM by OK and |Ẽ(Fp)| =
p+ 1± (π + π̄).

Reduction
by Deuring

?

Thm. 2.4 and Thm. 3.5

?

Thm. 3.9

�
�
�

�
�
�

��+

Thm. 3.9

��
���1

Prop. 3.8

PPPPq

Prop. 3.8

Q
Q
Q
Q
Q
Q
QQs

Thm. 2.4

Figure 1: Basic theory behind the complex multiplication method

Let us assume that D < −4. Once we know the j-invariant in Fp, the elliptic

curve with p+ 1− t points is constructed from one of the two equations (17). To
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see whether we have the right curve we can pick a random rational point and see

whether it is annihilated by N . If that is not the case then we have selected a

curve with p+ 1 + t points and the opposite equation gives the right choice. The

complex multiplication method is summarised by the following procedure.

Remark. The two special cases D = −3 and D = −4 can be handled in a

manner similar to the general case. To select between the different isomorphism

classes in each case we can use certain algorithms instead of multiplying random

points as in the general case. We refer the reader to [2] for full details.

CM-Method(p,N)

1 t← p+ 1−N
2 Find a fundamental discriminant D which satisifies 4p = t2 + s2|D| for s ∈ Z.

3 Construct the Hilbert class polynomial HD(X).

4 Compute a solution j0 of HD(X) ≡ 0 (mod p).

5 Construct the equation of an elliptic curve E over Fp of invariant j0.

6 Find a random point P on E.

7 if [N ]P 6= OE then

8 E ← quadratic “twist” of E

9 end

10 return E

4.3 Computational Aspects

Apart from the construction of the Hilbert class polynomial HD(X), which we

will look at in detail in §5, the other hard step in this algorithm is computing a

root of HD(X) ≡ 0 (mod p). Many standard factorisation algorithms are known

for that purpose. See for example Cohen [5, §1.6.1] or Knuth [8, §4.6.2].

Finding a “good” discriminant D that is suitable for our prime p is quite

simple, as we are expecting a certain cardinality N (the situation becomes more

involved when we use this method for primality testing, as we will see in §6). We

set t = p+ 1−N and

D =
t2 − 4p

s2
=

(p+ 1−N)2 − 4p

s2
,

and search for an s such that s2 divides (t2 − 4p) and D < 0 is fundamental and

as small as possible. The condition that D is small is important as we expect
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the algorithm to run in time asymptotic to a power of |D|, as we will soon see2.

Of course, a necessary condition for this algorithm to produce a solution is that

the integer N is contained in the Hasse interval Hp. In fact, since we restrict to

the case of a prime field Fp, all integers in Hp do occur as the group order E(Fp)
of some elliptic curve E over Fp [4].

We should note one special case for the algorithm, namely when N = p+ 1.

Then by Theorem 3.7 we know that we can pick any supersingular curve over

Fp. There are many criteria for supersingular curves, see for example [16, §V,

Theorem 4.1]. As an example, the elliptic curve E/Fp defined by y2 = x3 + 1 is

supersingular if and only if p ≡ 2 (mod 3).

Finally we remark on the computational complexity of the method. The two

time consuming steps in the algorithm are the construction of the Hilbert class

polynomialHD(X) and the computation of a root of HD(X) modulo p. Crucial to

the complexity analysis is the estimate log(h(D)) ∼ log(
√
d) [11, §XVI.4], where

we write d = |D|. It follows that the approximation h(D) ∼
√
|D| should not be

too bad. We will see in the next section that the basic complex analytic method

to construct HD(X) takes time O(d2(log d)2). By one approximation [12, §5.10]

it takes time O(d(log p)3) to calculate a solution to HD(X) ≡ 0 (mod p). Which

one of these two steps will dominate the running time of the algorithm depends

of course on the relative size of d and p. In general, we expect the O(d2(log d)2)

term to prevail if we seek elliptic curves with a large number of rational points.

The other steps in the algorithm count less towards the overall complexity. For

example, there is an algorithm to compute [m]P , for an integer m and a point P

on E, in time asymptotically O(logm) [14].

2In elliptic curve cryptography the discriminant has to be of certain minimal size to ensure
security. According to [1] some cryptography standards recommend using elliptic curves with
complex multiplication by an order of discriminant at least equal to 200.
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5 Constructing the Class Polynomial

The main step in the complex multiplication method is the construction of the

class polynomial of the imaginary quadratic order of discriminant D. In this sec-

tion we present a few different ways of solving that task. In their original paper

[2], Atkin and Morain suggested a complex analytic method based on numerical

evaluation of the j-function, which we will look at in some detail. The complex

analytic method has been estimated to run in time asymptotically O(d2(log d)2),

which is not much better than the naive method when we consider small inputs.

This method also requires extensive computing resources to work with the huge

Hilbert polynomials in high precision. Over the past few years a number of au-

thors have suggested alternative approaches to tackle these problems. Bröker and

Stevenhagen [4] have proposed solving the class equation in a non-archimedean

setting by working over the p-adic numbers. The main advantage of this method

is that it requires substantially less precision than the complex analytic approach.

To address the problem of working with huge Hilbert polynomials with integer

coefficients, Agashe, Lauter, and Venkatesan [1] have come up with an algorithm

based on the Chinese Remainder Theorem, which can be used to directly con-

struct HD(X) modulo p from a set of polynomials HD(X) modulo smaller primes.

Apart from avoiding the computation of the full Hilbert class polynomial over

the complex numbers, this method promises to be asymptotically faster than the

complex analytic approach for certain inputs, as we will see. At the end of this

section we will also look at how we can use higher class invariants, instead of the

invariant j, to generate Hilbert class fields.

5.1 Numerical Evaluation of the j-Function

In §2.2 we gave a formula for j(τ) in terms of the Dirichlet η-function and

the modular invariant ∆(τ) (equations (4) and (6)). The convergence of the

q-expansion for η is quite good as the exponents for each term grow quadrati-

cally. It should therefore be practical to apply this formula directly to compute a

numerical value of j(τ). To see how many terms have to be included for a desired

precision, we look at the truncated series

ηM (τ) = q1/24
τ

(
1 +

M∑
m=1

(−1)m(qm(3m−1)/2
τ + qm(3m+1)/2

τ )

)
, (21)
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where M is a positive integer and qτ = e2iπτ as before. For an upper bound on

the error we get by truncating the series we use the following Lemma [13].

Lemma 5.1. Let qτ = e2πiτ = ρτe
iθ, where τ is a complex number in the upper

half plane H such that 0 < |qτ | < 1
2 . Then if M is a positive integer,

|η(τ)− ηM (τ)| ≤ 6ρ3M2/2
τ .

Proof. Write qτ = ρτe
iθ = ρτ (cos(θ) + i sin(θ)) and assume that 0 < |qτ | < 1.

Then define the functions

f(τ) = f(qτ ) =

∞∑
n=1

(−1)n(qm(3m−1)/2
τ + qm(3m+1)/2

τ )

fM (τ) = fM (qτ ) =
M∑
m=1

(−1)m(qm(3m−1)/2
τ + qm(3m+1)/2

τ )

Let r(τ) = r(qτ ) and rN (τ) = rN (qτ ) to be the real parts of f(τ) and fN (τ),

respectively, and

δ(τ) = δ(qτ ) = r(ρτ )− r(qτ )

δM (τ) = δM (qτ ) = rM (ρτ )− rM (qτ )

We look at the difference δ(qτ )− δN (qτ ). This is an alternating series and since

|ρτ | < 1 we get (using shorthand notation fm = m(3m− 1)/2 and gm = m(3m+

1)/2)

|δ(qτ )− δN (qτ )| =
∞∑

m=M+1

(−1)m(ρfmτ (1− cos(θfm)) + ρgmτ (1− cos(θgm)))

≤ ρfmτ (1− cos(θfm)) + ρgmτ (1− cos(θgm))
∣∣
m=M+1

≤ 2(ρ(M+1)(3M+2)/2
τ + ρ(M+1)(3M+4)/2

τ )

= 2εM+1.
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Simple manipulation yields

|r(qτ )− rM (qτ )| = |(r(qτ )− r(ρτ )) + (rM (ρτ )− rM (qτ )) + (r(ρτ )− rM (ρτ ))|

= |(δM (qτ )− δ(qτ )) + (r(ρτ )− rM (ρτ ))|

≤ 3εM+1.

Repeating the calculations for the imaginary parts, we obtain the bound |f(τ)−
fN (τ)| ≤ 6εN+1. We estimate the size of the term εm by

εm = ρm(3m−1)/2
τ + ρm(3m+1)/2

τ

= ρm(3m−1)/2
τ (1 + ρmτ )

≤ 2ρm(3m−1)/2
τ

≤ ρ3(m−1)2/2
τ if m ≥ −2 log 2/ log ρτ+3

5 ,

which is true for all m ≥ 1 if ρτ ≤ 1
2 . Combining this with the bound for

|f(τ) − fN (τ)|, and noting that |q1/24
τ | is always less than 1, gives the desired

result.

5.2 Complex Analytic Approach

By Theorem 2.3, we know that

HD(X) =
∏

[a,b,c]∈Cl(D)

(
X − j(−b+i

√
d

2a )
)
,

where Cl(D) is the set of all reduced quadratic forms of discriminant D and d =

|D|. We know that the degree of HD(X) equals the class number h = h(D). By

iterating through all reduced forms of discriminant D, and computing a numerical

value of the corresponding j-value, we get a simple method for constructing

the polynomial HD(X). The important part here is that if we ensure sufficient

precision in our calculations then we can exactly determine HD(X) because it

has integer coefficients (Theorem 2.3).

Remark. As we noted in §2.4, we can use the fact that HD(0) is a cube of a

rational integer to check our computations.

To make sure that we get the correct outcome we make some observations on the

polynomial HD(X). Because it has integer coefficients the absolute error in the
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final computation of each coefficient must be within 0.5. To achieve this accuracy

we need some prior estimate of the size of the coefficients. From τ = (−b +

i
√
d)/(2a) we obtain ρτ = e−π

√
d/a and θ = −πb/a, where we write qτ = ρτe

iθ. By

the q-expansion of j (eq. (2.2)) we get the estimate |j(τ)| = O(q−1
τ ) = O(eπ

√
d/a).

We then get an upper bound B on the size of the coefficients by forming a product

of all the values of eπ
√
d/a associated with reduced quadratic forms [a, b, c] of

discriminant D, times the largest (middle) binomial coefficient.

B =

(
h

bh/2c

)
exp

(
π
√
d
∑

[a,b,c]

1

a

)
. (22)

The required decimal precision is obtained by taking the base-10 logarithm of

this bound:

Prec(D) =

⌈ log
(

h
bh/2c

)
+ π
√
d

log 10

∑
[a,b,c]

1

a

⌉
+ p0. (23)

Here p0 is an empirical constant that takes care of rounding errors and errors due

to our estimate of |j(τ)|. According to Cohen [5, §7.6.2] and Atkin [2, §7.1], the

value of p0 is typically chosen to be 10. The figure Prec(D) should be calculated

once, before computing HD(X).

Now we need to know what value of M in eq. (21) approximates η(τ) =

η((−b+ i
√
d)/(2a)) with the desired floating point precision. We observe that if

[a, b, c] is a reduced form of negative discriminant D then d = 4ac−b2 ≥ 4a2−a2,

which implies that a ≤
√
d/3. Hence

ρτ = e−π
√
d/a ≤ e−π

√
3 < 1

2 ,

so we can apply Lemma 5.1. Equating the base-10 logarithm of the error bound

given by the Lemma and the precision Prec(D) yields

M =

⌈ √
a

2

3

Prec(D) log 10 + log 6

π
√
d

⌉
(24)

Then to calculate an accurate numerical value of j(τ) we compute ηM (τ) by eq.

(21) and apply the result to eq. (7). For that we need to compute both ∆(τ)

and ∆(2τ). In general, to compute ∆(kτ) we compute ηM (qkτ ) to the order M

obtained by replacing a with a
k in eq. (24).
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We can make some further remarks to make the computation more efficient.

If [a, b, c] is ambiguous (see §2.3) we get j([a,−b, c]) = j([a, b, c]), where x̄ denotes

the complex conjugate of x. If r is a root of HD(X) then r̄ is also a root, so we

can halve the computation by checking for ambiguous forms. Then if [a, b, c] is

ambiguous we adjoin a factor

(X − j([a, b, c]))(X − j([a, b, c])) = X2 − 2<(j([a, b, c]))X + |j([a, b, c])|2

to the polynomial. Otherwise we adjoin a factor (X − j([a, b, c])). Finally we

note that because b is even if and only if D is even (look at D = b2−4ac, and the

term 4ac is even), we can reduce the number of iterations by initially checking

the parity of D.

With these remarks in mind, the procedure Hilbert-Basic runs through

all positive a, b such that b ≤ a ≤
√
d/3 and a divides b2−D

4 , and constructs a

polynomial whose roots are the j-invariants associated with the reduced forms

[a, b, b
2−D
4a ].
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Hilbert-Basic(D)

1 Compute Prec(D) � Using formula (23)

2 HD ← 1 � Polynomial variable HD

3 b← |D| mod 2 � Init. b to 0 or 1 (D odd/even)

4 B ← b
√
|D|/3c � Upper bound of range

5 while b ≤ B do

6 t← b2−D
4 � Possibly t = ac

7 a← max(b, 1) � If b = 0 then a 6= b

8 repeat

9 if a | t then

10 j ← j((−b+
√
D)/(2a)) � Using (21) and (7)

11 if a = b or a2 = t or b = 0 then

12 HD ← P · (X − j)
13 else

14 HD ← P · (X2 − 2<(j)X + |j|2)

15 end

16 end

17 a← a+ 1 � Loop on a

18 until a2 > t

19 b← b+ 2 � Loop on b (either odd or even)

20 end

21 Round coefficients of HD to nearest integer

22 return HD modulo p

We note that there are two serious drawbacks to this procedure. First of all,

the Hilbert class polynomial has huge integer coefficients, which grow fast as the

class number increases. Secondly, the algorithm requires immense precision for

floating point calculations in order to ensure correct results. From a practical

point of view, the high precision and memory handling required by this method

hinders its implementation on simple processors with limited amount of memory,

as encountered in many cryptography applications.

Example 1. Let us look at a simple example to illustrate the algorithm. We

will construct HD(X) for a fundamental discriminant D = −23. The class

number of the imaginary quadratic field Q(
√
−23) is h(−23) = 3 and the three
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reduced quadratic forms of discriminant -23 are f1 = [1, 1, 6], f2 = [2, 1, 3] and

f3 = [2,−1, 3], with corresponding τ -values τ1, τ2 and τ3, respectively. We

calculate the required precision by formula (23)

Prec(−23) =
⌈
log 3+π

√
23

log 10 (1 + 1
2 + 1

2 ) + 10
⌉

= 25.

This means that our calculations have to be carried out with at least 25 decimal

digits. To achieve this precision we need to compute ηM (τ) to order M = 2

and M2 = M3 = 3 for arguments τ1, τ2 and τ3, respectively. That we need

only consider 2 or 3 terms to achieve such high precision illustrates the good

convergence of the q-expansion. Now we compute the polynomial

P = (X − j(τ1))(X − j(τ2))(X − j(τ3)),

and after taking real parts and rounding the coefficients to the nearest integer,

we get

H−23(X) = X3 + 3491750X2 − 5151296875X + 12771880859375.

We observe that the constant factor is correctly a cube of an integer, 233753 =

12771880859375. To verify our result we check if H−23(X) splits into linear

factors modulo a prime p. We look at the prime p = 59, which is “good” for the

discriminant D = −23, which means that there is a solution to 4 · 59 = t2 + 23s2

(just take (t, s) = (12, 2)). Reduction modulo 59 gives

H−23(X) ≡ (X − 20)(X − 42)(X − 44) (mod 59),

and all the roots lie in F59. Taking j0 = 20, we construct the elliptic curve

E : y2 = x3 + 33x+ 13 from equation (17). Point counting reveals that the order

is correctly |E(F59)| = 48 = 59 + 1− 12.

5.3 Directly Constructing HD(X) Modulo p

In the complex analytic method we compute the class polynomial over C using

the fact that its coefficients are rational integers. Even though we are eventually

looking for HD(X) mod p, we first have to compute HD(X) with full precision

and then perform reduction. The problem with this approach is that the coeffi-

cients of the class polynomial come to be very large. We have already seen an

example for class number 3 where the constant term of HD(X) has 16 decimal

digits. In the case when D = −832603, for example, the class number is 96 and
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the constant term has more than 1200 digits. These large coefficients make the

complex analytic method rather unwieldy in practise.

In a recent paper, Agashe et al. [1] suggest a method to directly compute

the reduced polynomial HD(X) mod p without ever constructing HD(X) over C.

This is achieved by generating a set of reduced polynomialsHq(X) = HD(X) mod

q, where q is a prime number relatively small compared to p. Then using an al-

gorithm based on a modified version of the Chinese Remainder Theorem, the

polynomial HD(X) mod p can be constructed one coefficient at a time, from

knowledge of each of the reduced polynomials Hq(X).

Theorem 5.2 (Modified Chinese Remainder Theorem). Let Sm = (mi)
l
i=1 and

Sa = (ai)
l
i=1 be sets of integers for some l > 0, such that all the mi are co-prime

and 0 ≤ ai < mi for i = 1, 2, · · · , l. Assume that there exists an integer x such

that |x| < (1
2 − ε)

∏l
i=1mi for some small positive real number ε < 1

2 . Then,

given an integer n less than |x|, there exists an algorithm for directly computing

x mod n from Sm and Sa.

Remark. The point of the theorem is that we can compute x mod n without

ever knowing x explicitly.

Proof. We will prove the existence of such an algorithm. Define

M =
l∏

i=1

mi

Mi = M/mi

bi ≡ 1/Mi (mod mi) 0 ≤ bi < mi

The definition of bi implies that biMi ≡ 1 (mod mi) for all i = 1, 2, · · · , l. Then

by the Chinese Remainder Theorem, the positive integer s =
∑l

i=1 aibiMi is

congruent to x modulo M , i.e. s = x + rM , where r is some non-negative

integer. We write x = s − rM and we want to compute x mod n. If we knew

nothing of x we would not be able to infer anything about the integer r, but

because we are told that x < (1
2 − ε)M , we observe that r = b sM + 1

2c (if x were

greater or equal than M/2 then r would be d sM + 1
2e). If we can recover r, then

x mod n may be computed by

x mod n = (s mod n)− (r mod n) · (M mod n),
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as all the quantities on the right hand side are known. To solve for r, we observe

that |x| < (1
2 − ε)M implies that s

M + 1
2 is not within ε of an integer. Thus we

can recover r by computing an approximation r0 such that |r0− s
M | < ε and then

round r0 to the nearest integer. We achieve this by setting

r0 =
l∑

i=1

aibi
mi

,

where each term in the series is computed with floating point precision ε/l.

From the ideas developed in the proof of Theorem 5.2 we present an algorithm

for computing x mod n, given n, Sm, Sa and ε having the same signature and

properties as in the theorem. Note that in the description of the algorithm we let

rem(a, b) denote a variable (and not a function call) holding the value of a mod b,

the remainder of the Euclidian division of a by b.

Modified-CRT(n, Sm, Sa, ε)

1 M ←
∏l
i=1mi

2 l← |Sm|
3 for i← 1 to l do � Calculate the Mi’s and bi’s

4 Mi ←M/mi

5 bi ← 1/Mi mod mi

6 end

7 rem(M,n)←M mod n

8 Compute rem(Mi, n)← rem(M,n)/(mi mod n) for all i

9 Compute rem(aibi, n)← aibi mod n for all i

10 r ← round(
∑l

i=1
aibi
mi

� With precision ε/l

11 rem(r, n)← r mod n

12 rem(s, n)← (
∑l

i=1 rem(aibi, n) · rem(Mi, n)) mod n

13 return (rem(s, n)− rem(r, n) · rem(M,n)) mod n

Remarks.

1. The computation of Mi mod n in step 8 can be parallelised. This could be

useful when working with very large class numbers.

2. In step 10 we need to compute each term to precision ε/l. In practise,

we would perform the calculations with d− log ε/l/ log 10e + p0 significant
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digits, where p0 is some positive constant that takes into account rounding

errors, as we described in §5.2.

Now we describe how this algorithm can be used to compute HD(X) mod p

directly. Unless otherwise noted we assume that D < −4. To begin with, we

calculate B, the upper bound of coefficients of HD(X), by formula (22), and the

class number h. One way of computing the class number is to use an algorithm

similar to the Hilbert-Basic procedure, i.e. by traversing the reduced quadratic

forms of discriminant D and keeping a counter. We then fix a small positive

number ε (for example ε = 0.001 as suggested in [1]) and set M = B/(1
2 − ε).

Next we generate a set of distinct prime numbers q, that satisfy 4q = x2 + |D|
for some integer x, such that the product of all the primes will exceed M .

For each prime q we search for the h elliptic curves over Fq that have q +

1 − t or q + 1 + t rational points, where t comes from 4q = t2 + |D|. We can

do this either by counting points or by finding a random point on the curve

and seeing if it is annihilated by either order (in the latter case we are doing

something similar to the naive algorithm that we described on page 22). In

the algorithm Hilbert-CRT below we apply the first method. After computing

these j-invariants we construct the polynomial HD(X) mod q. Finally we use the

Mod-CRT routine to compute HD(X) mod p, one coefficient at a time, from the

coefficients of all the “smaller” polynomials.

Remark. By selecting a fundamental discriminant D which satisifies 4p = t2 +

s2|D|, for some integers t and s, we know that the roots of HD(X) mod p are

the j-invariants of elliptic curves that have p+ 1± t rational points over Fp. The

opposite, that a suitable j-invariant in Fp is a root of HD(X) mod p, is however

not true in general. Checking all j-invariants in Fp for p + 1 ± t rational points

would reveal curves having complex multiplication by an order in K containing

the order of index s in OK . Hence we restrict the algorithm to discriminants

that satisfy D = t2 − 4p, which has solutions in t for all odd primes p unless

D ≡ 1 (mod 8). To date, the CRT method has not been extended to work with

arbitrary orders in K, to our best knowledge.
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Hilbert-CRT(D, p)

1 Initialise B and h

2 S ← ∅, H ← ∅
3 M ← 1

4 while M ≤ B do � Generate a set S of small primes

� such that their product M exceeds B

5 Find a prime q such that

6 4q = t2 + d has a solution for t

7 S ← S ∪ {q} � Add q to the set S

8 M ←M · q
9 end

10 for each q in S do � Compute HD(X) mod q for all q ∈ S
11 Sq ← ∅
12 for each j ∈ Fq\{0, 1728} do � We should also break when |Sq| = h

13 k ← j
1728−j

14 E ← y2 = x3 + 3kx+ 2k � Elliptic curve E with j(E) = j

15 if |E(Fq)| = q + 1± t then

16 Sq ← Sq ∪ {j}
17 end

18 end

19 Hq(X) =
∏
j∈Sq(X − j) � Hq(X) denotes HD(X) mod q

20 H ← H ∪Hq(X) � Add Hq to the set H

21 end

22 for i← 1 to h do � Lift to HD(X) mod p

23 Form a set Sa of the ith coefficients of every Hq(X)

24 ci ←Mod-CRT(p, S, Sa, ε) � Compute the ith coefficient of HD(X) mod p

25 end

26 return
∑h

i=1 ciX
i � HD(X) mod p

Remark. Note that in practise one would not implement this algorithm directly

as it is written here. For example, a large part of the Mod-CRT procedure is

common to all coefficients of HD(X) (mod p), so they should be executed only

once. The two procedures are defined separately here simply for the sake of

clarity.
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According to [1] the overall complexity of this algorithm, when d is large, is with

high probability

O
(
d3/2(log d)10 + d(log d)2 log p+ d1/2(log p)2

)
.

This shows that we may expect this algorithm to run faster than the complex

analytic method when d is roughly larger than (log p)2 [1]. In practical terms, this

might be the case in some cryptography applications, where one usually requires

a large discriminant. On the other hand, in elliptic curve primality testing one

typically looks for a small discriminant, which implies that the complex analytic

approach might work better. We look better at primality testing in §6.

Example 2. The version of the Hilbert-CRT algorithm that we present here

can only work for a discriminant D 6= 1 (mod 8) as we have remarked. Let D =

−35 be a fundamental discriminant and assume we want to compute HD(X) mod

p where p = 3089 = 1112 + 35 is a prime number. The class number of the

imaginary quadratic field Q(
√
−35) is h(−35) = 2, corresponding to the reduced

quadratic forms [3,±1, 3]. By formula (22) we obtain the bound B ≈ 2e13 and

set M = B/( 1
2 − ε) ≈ 106, where we choose ε to be 0.001. Then we compute

a set of small primes q that satisfy 4q = t2 + 35, for some integer t, and whose

product exceeds M . For each q we also compute the two j-invariants of the

elliptic curves over Fq that have q + 1 ± t rational points. The following table

displays the results of these computations.

q t j HD(X) mod q

11 3 4, 10 X2 + 8X + 7

29 9 13, 24 X2 + 21X + 22

191 27 12, 35 X2 + 144X + 38

281 33 198,207 X2 + 157X + 241

389 39 51, 177 X2 + 161X + 80

659 51 76, 78 X2 + 505X + 656

Setting S = {11, 29, 191, 281, 389, 659}, we calculate

Modified-CRT(p, S, {8, 21, 144, 157, 161, 505}, ε) = 2068,

Modified-CRT(p, S, {7, 22, 38, 241, 80, 656}, ε) = 1580.

Hence

H−35(X) ≡ X2 + 2068X + 1580 ≡ (X − 1874)(X − 2236) (mod 59).
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Taking j0 = 1874 gives the elliptic curve E : y2 = x3 + 1104x + 736 over F3089,

which has exactly N = 3089 + 1− 111 = 2979 rational points.

5.4 Non-Archimedean Approach

Bröker and Stevenhagen have recently come up with a new idea for constructing

the Hilbert class polynomial in a non-archimedean (p-adic) setting. We will now

briefly review this method, referring to to [4] for full details.

The first step in the non-archimedean method is to find a small prime q <

p such that 4q = t2 + D, for a positive t as small as possible. Here D is a

fundamental discriminant for p, which is computed as before. For such a prime

q, we know that there exists an ordinary elliptic curve over Fq with complex

multiplication by the order OK (D is fundamental) and Nq = q + 1− t rational

points. Since we are working with a small Nq we can just as well search for such

a curve using the naive method that we have seen before.

Now let H denote the Hilbert class field of K = Q(
√
D). According to the

Deuring Lifting Theorem there exists an elliptic curve E′ over H, with complex

multiplication by the unique quadratic order of discriminant D, and a prime q|q
in H, such that E′ reduces modulo q to E. Now the important point is that since

q splits completely in H, the curve E′ is in fact defined over the q-adic field Qq.

The Hilbert polynomial HD(X), whose roots are the j-invariants of isomorphic

elliptic curves over H, generates the Hilbert class field. In the complex analytic

approach we computed HD(X) by approximating the j-function using floating

point arithmetic. If we instead consider elliptic curves over Qq, we can generate

HD(X) using q-adic arithmetic, which has many advantages. Of course, the

reduction of HD(X) modulo p splits as before into linear factors, whose roots are

j-invariants of the elliptic curves over Fp which we eventually want to generate.

The advantage of working in a q-adic setting is that the q-adic accuracy is

preserved when adding or multiplying two integers. If n and m are known with

q-adic accuracy up to O(qk) then nm and n + m are also known up to O(qk).

This is of course not true over the real or complex numbers.

For this method to work, we of course need some method to numerically

evaluate j over Qq. This is provided by the recent work of Couveignes and

Henocq, using a Newton process that doubles the precision with each iteration,

as described in [4]. It would certainly carry us too far to describe this process

in any detail. Complexity estimates of the non-archimedean algorithm have not
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yet been published, to our best knowledge, but the full details should be given

in Bröker’s forthcoming doctoral thesis (due in 2006).

5.5 Using Class Invariants

The coefficients of the Hilbert class polynomial become huge as the class number

grows as we have mentioned. Even though our goal is to compute the reduction

of this polynomial modulo p, the intermediary steps still need to be performed

with high precision to ensure that we get the correct result.

From the work of Weber (see [7], for example) we know that we can construct

generating polynomials for the Hilbert class fields using various higher level mod-

ular functions other than the j-function. If we let ω denote the generator of OK ,

the ring of integers of K = Q(
√
D), we call u(ω) a class invariant if it is contained

in K(j(ω)) = Q(ω, j(ω)). It follows that if u(ω) is a class invariant then so is

any of its conjugates. Since we are working only with fundamental discriminants

D, the field K(j(ω)) is precisely H, the Hilbert class field of K (Theorem 2.3).

We will refer to the irreducible polynomial of the class invariant u as a Weber

polynomial, written as WD[u](X). If we can find a class invariant for K and

determine the Galois action of Cl(D) on this invariant, we can compute its min-

imal polynomial over K. Of course, since our goal is to compute j-invariants of

elliptic curves rather than just generate H, we also need some relation to recover

j from some value of u.

A concise treatment of the vast theory of class invariants is well beyond the

scope of this essay. To give some idea of the subject we will look at one example,

for a particular congruence class of D, in the complex analytic setting. Bröker

and Stevenhagen [4] describe how the non-archimedean approach can be adapted

to work with Weber polynomials as well as Hilbert polynomials, the full details

of which will be published in Bröker’s doctoral thesis. To our best knowledge,

there are yet no published results concerning the extension of the CRT method

to work with class invariants.

Assume that τ is a quadratic number defined by aτ2 + bτ + c = 0. Then we

define

f(τ) = ζ−1
48

η( τ+1
2 )

η(τ)
, (25)
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γ2(τ) =
f(τ)24 − 16

f(τ)8
, (26)

where ζ48 is the 48th root of unity in C. We can recover the elliptic modular

invariant j(τ) by

j(τ) = γ2(τ)3 = γ3(τ)2 + 1728. (27)

We have the following theorem [2, Theorem 7.1].

Theorem 5.3. Let τ be a quadratic number defined by aτ2 + bτ + c = 0. If 3 | a,

3 | c but 3 - b, then Q(γ2(τ)) = Q(j(τ)).

Now assume that D is a fundamental discriminant and that p is a rational prime

that satisfies the relation 4p = t2 + s2|D|. The roots of WD[γ2](X) generate the

Hilbert class field H of K = Q(
√
D) and the prime p splits completely in H. To

construct WD[γ2](X) we also need to determine the Galois action of Cl(D) on the

invariant γ2(τ). Using the functional equations for η, Atkin and Morain present

a simple algorithm that computes an equivalent form [a1, b1, c1] and a CM-point

τ1 from a given form [a0, b0, c0] and a point τ0, satisfying Theorem 5.3. We refer

to [2, §7.2] for the details. Once we have constructed the Weber polynomial for

γ2, we recover the j-values from the roots of WD(X) ≡ 0 (mod p) in Fp, using

formula (27).

Example 3. We can use the γ2 class invariant to compute the Weber polynomial

for discriminant D = −23. Starting with τ0, a root of 3τ2 − 7τ + 6, we obtain

W−23[γ2](X) = X3 + 155X2 + 650X + 23375.

Clearly this is a more simple expression than the one we obtained by using j-

invariants in Example 1. Reduction modulo p = 59 yields

W−23[γ2](X) ≡ (X − 40)(X − 47)(X − 53) (mod 59).

We verify that (40)3 ≡ 44 (mod 59), (47)3 ≡ 42 (mod 59) and (53)3 ≡ 20

(mod 59), which is in accordance with our previous results.

From this example we see that we reduce the size of the constant term of the

class polynomial from 14 decimal digits, when using j, to 5 decimal digits, when

using γ2. According to Cohen [5, §7.6.3] the use of higher class invariants reduces



5.5 Using Class Invariants 41

the size of coefficients only up to some constant factor. Although this may be

useful in practise, it has of course, according to this, no effect on the asymptotic

complexity estimate of an algorithm.
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6 Primality Testing

In 1986 Goldwasser and Kilian presented the first general purpose primality test

that was based on the theory of elliptic curves. A crucial step in their method

was to search for an elliptic curve with a given number of rational points, by

picking random curves and counting points. Although quite powerful in theory,

this method proved hard to implement in practice. Soon after, Atkin came up

with a better approach. Instead of searching for a curve, he applied the theory of

complex multiplication to explicitly construct a curve with the properties needed

for the test. We will now finish this essay by briefly describing this elliptic curve

primality test, referring the reader to Atkin [2] and Cohen [5] for full details.

Let N denote an integer whose primality is to be tested. The following

proposition, which we state without proof, provides the basis for the primality

test [5, Propositions 9.2.1 and 9.2.2].

Proposition 6.1. Let N > 3 be an integer, E an elliptic curve modulo N and

let m = |E(FN )|. Assume that we know a point P ∈ E(FN ) such that m and P

satisfy the following conditions.

(i) There exists a prime divisor q of m such that q >
(
N1/4 + 1

)2
.

(ii) [m]P = OE = (0 : 1 : 0).

(iii) [mq ]P = (x : y : t) with t ∈ (FN )∗.

Then, assuming all computations are possible, N is prime.

The last statement of this proposition, concerning valid computations, is impor-

tant. Since N may be composite, we could very well be dealing with elliptic

curves over rings instead of fields. However, instead of adapting our methods we

simply act as if N was prime. Then as soon as some basic arithmetic operation

on E fails, we know that N must indeed be composite.

The first step of the primality test is to see whether N is small enough to be

easily factored using simple methods, such as trial division. We arbitrarily set

a threshold B that determines our action, e.g. B = 1020. If N is larger than

B, then we progress to find a fundamental discriminant D which satisfies the

conditions of Theorem 2.4 for some t and s, and for which m = N + 1 − t has

a large factor q which is a probable prime. To solve for t and s we can use a

well-known algorithm of Cornacchia (see [14] for a recent version that has been
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optimised for our purpose). Once such a discriminant has been found, we progress

to compute the equation of an elliptic curve E over FN with m rational points,

using the CM method. Of course, if anything fails at this stage, we immediately

abort the algorithm and output that N is composite. After we have found the

equation for E, we pick a random point P and see if conditions (ii) and (iii) of

Proposition 6.1 hold. If that is the case, then all there is left is to verify that q

is indeed a prime. We do that by making a recursive call to the primality testing

procedure. This produces a tower of probable primes which acts as a certificate

for the primality of N : If one term fails to be prime then the previous term is

neither a prime, and the whole tower crumbles. The recursive process should

terminate as q < N . In fact, since q is always less than half of N , we expect the

number of recursive calls to be O(logN). We summarise what has been said in

the following algorithm.

AGK-Primality-Test(N)

1 if N < B then

2 Trial divide to see if N is prime, return ‘prime’ or ‘composite’ accordingly.

3 end

4 repeat

5 Find a fundamental discriminant D such that N splits as a

product of two elements in the ring OK of integers in

K = Q(
√
−D), i.e. p = ππ̄, π ∈ OK .

6 m← N + 1− (π + π̄)

7 until m = kq with k > 2 and q >
(
N1/4 + 1

)2
a probable prime

8 Compute E with m rational points by the CM method

9 Search for a rational point P such that [m]P = OE but [mq ]P 6= OE .

10 if there is such a point P with m > (N1/4 + 1)2 then

11 if AGK-Primality-Test(q) =‘prime’ then

12 return ‘prime’

13 else

14 return ‘composite’

15 end

16 end
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