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Summary

An important open question that has motivated a lot of work in finite model theory is that of
finding a logical characterisation of polynomial-time computability (PTIME). Most attempts
to answer this question have focused on finding suitable extensions of first-order logic that
can describe exactly all properties decidable in PTIME. In this way, Immerman and Vardi
independently showed that on inputs equipped with a linear order, inflationary fixed-point
logic (IFP) expresses exactly the properties in PTIME. In the absence of an order, IFP is too
weak to express all properties in PTIME. In particular, it fails to define very simple cardinality
properties. This is easily solved by extending the logic with counting terms, which gives us
inflationary fixed-point logic with counting (IFPC), which was at one time conjectured to be
a logic for PTIME. However, Cai, Fiirer and Immerman later showed that this logic still falls
short of capturing PTIME. Since this result, a number of examples have been constructed
of polynomial-time decidable properties that are not expressible in IFPC. Most recently, it
was shown that the problem of determining the solvability of affine equations over any fixed
finite Abelian group is not definable in this logic. In particular, this implies that over finite
fields IFPC is not able to express matrix rank.

To address this deficiency, we define an extension of IFP by operators for expressing the rank
of definable matrix relations over finite fields. We show that the resulting logic IFPR is strictly
more expressive than IFPC. In fact, we show that an even weaker logic, the extension of first-
order logic with rank operators (FOR), can already define many of the properties used to
separate IFPC from PTIME, such as solvability of linear equations and the property defined
by Cai et al. Over the class of ordered structures, we characterise the descriptive complexity of
first-order rank logics and show that they correspond to natural logspace complexity classes.
Moreover, we show that the rank logics FOR and IFPR have a strict arity hierarchy, where
the arity of a rank operator is the number of distinct variables that it binds.

We also study the extent to which IFPC can express linear algebra. We show that IFPC
can define the characteristic polynomial (and hence determinant) of any matrix over a finite
field, over the ring of integers or over the field of rational numbers. Moreover, we show that
for rational-valued matrices, IFPC can already define the rank and the minimal polynomial.
It is therefore seen that the additional expressive power of the logic IFPR comes specifically
from the ability to define matrix rank over finite fields.

Finally, we show that equivalence in logics with rank operators can be characterised in
terms of pebble games based on set partitions. This gives us a game-based method for proving
lower bounds for FOR and IFPR. As an illustration of the game method, we establish that
over finite structures, IFPR,,; # IFPR,;; for distinct primes p and g, where IFPR,,, is the
restriction of IFPR that only has operators for defining rank of matrices of arity at most m
over the finite field GF .
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Chapter 1

Introduction

Computational complexity theory is the programme of classifying computational problems
based on how difficult they are to solve. In this context, complexity is measured by the
amount of resources required by a computation, such as running time, memory, number
of processors, and other measurable quantities of the computational model. From this study
one formally defines classes of problems of related complexity such as PTIME, the collection
of all decision problems that can be solved by deterministic polynomial-time algorithms.
An alternative way of analysing the difficulty of solving computational problems is to ap-
ply techniques from logic and finite model theory. In the study of descriptive complexity,
instead of considering the difficulty of deciding whether an input possesses a property, one
studies the richness of the least logic needed to define that property. These two measures of
complexity—the hardness of computation versus logical expressibility—turn out, in many
cases, to be equivalent.

The study of descriptive complexity was essentially initiated by the work of Fagin [26],
who showed that a class of finite relational structures is decidable in non-deterministic poly-
nomial time (NP) if and only if it is definable in the existential fragment of second-order
logic. This naturally raises the question whether there is a similar logical characterisation of
PTIME. Specifically, is there a logic in which a class of finite structures is expressible if and
only if membership in the class is decidable in deterministic polynomial time? This question
is still wide open and is considered to be one of the main open problems in both finite model
theory and database theory.

1.1 Is there alogic for PTIME?

The question whether there is a logic that captures polynomial time was first raised by Chan-
dra and Harel [I3] in the context of database theory and later reformulated by Gurevich [35]
who also stated the conjecture that no such logic exists. It asks for a logic, satisfying some
basic technical requirements, in which precisely those properties of finite structures which
are decidable in polynomial time are definable. The details of these technical requirements
are not important in this context; essentially, the idea is to rule out the possibility of taking
an arbitrary collection of properties (for instance, the set of all polynomial-time decidable
properties) and letting that constitute a logic.

The programme of seeking a logic for PTIME is of fundamental theoretical significance,
as it aims to characterise the structure of both logics and complexity classes. However, much
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of the research in this area has also been motivated by applications in database theory. This is
because a concrete logical characterisation of polynomial time would give rise to a database
query language which could express precisely all the feasible database queries (that is, queries
decidable in polynomial time). This was partly the motivation behind the work of Chandra
and Harel and research in this area remains active to date (see for instance Nash, Remmel
and Vianu [57] for new insights).

Most attempts to construct a logic for PTIME have focused on finding suitable extensions
of first-order logic. It is easy to show that every class of structures defined by a first-order
sentence is decidable in polynomial time. Similarly, it is not hard to show that there are
polynomial-time properties that are not definable in this way. Specifically, it can be shown
that first-order logic lacks the ability to express any non-trivial property based on recursion,
such as transitive closure. Thus, a logic to capture PTIME must extend the expressive power
of first-order logic with the power to define polynomial-time inductive properties.

Inflationary fixed-point logic (IFP) is a logic that combines first-order logic with the abil-
ity to formalise inductive definitions. By a result proved independently by Immerman [44]
and Vardi [65], it is known that this logic expresses exactly the polynomial-time properties
of ordered finite structures. Here, an ordered structure is a structure whose signature con-
tains a special binary relation symbol < that is interpreted as a total linear ordering of the
underlying domain. Despite this result, IFP is too weak in the absence of ordering to express
all polynomial-time properties. In particular, it fails to define very simple cardinality prop-
erties, such as whether the domain of a structure has an even number of elements. Clearly
this property of “evenness” is decidable in polynomial time by a simple counting procedure.

Various attempts have been made to extend fixed-point logic with new arithmetical or
logical features, in the hope of finding a logic which captures PTIME on all finite structures.
In [44}/45], Immerman suggested adding a mechanism for counting to the logic IFP. Count-
ing, apart from being a fundamental operation in numerous algorithms, exemplifies the lim-
itations of fixed-point logic, as mentioned above. The resulting logic, inflationary fixed point
logic with counting (IFPC), has been intensively studied over a number of years [58] and
was at one time conjectured by Immerman to be a logic for PTIME (for further details, see
[12])). This logic has been shown to capture polynomial time on many natural classes of struc-
tures, including planar graphs and structures of bounded tree-width [30} 32, 34} [46]. Most
recently, it was shown by Grohe [33] that IFPC captures polynomial time on all classes of
graphs with excluded minors, a result that generalises many of the previous partial capturing
results. Furthermore, it can be shown that IFPC captures polynomial time on “almost all”
finite structures in a precise technical sense [38].

Despite the many promising results, Immerman’s conjecture was ultimately refuted by
Cai, Firer and Immerman [12], who constructed a query on a class of finite graphs that
can be defined by a polynomial-time computation but not by any sentence of IFPC. Since
then, other constructions that expose the limitations of IFPC have been given. Gurevich and
Shelah [36] defined a class of finite rigid structures known as multipedes, and considered
the task of uniformly defining a linear order over this class. They showed that this task,
while computable in polynomial time, is not expressible by any fixed formula of IFPC. Blass,
Gurevich and Shelah [9] later turned this construction into a decision problem and proved
that IFPC is not able to tell whether two given multipedes (each with a designated vertex)
are isomorphic or not; a problem which again is decidable in polynomial time.
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Even though the work of Cai et al. shows that IFPC falls short of capturing PTIME on all finite
structures, it can be argued that the graph query used in their construction is very artificial.
The same can be said of the examples constructed by Gurevich and Shelah. Therefore, it was
often remarked that possibly all natural polynomial-time properties of finite structures were
still definable in IFPC. Recently, however, it was shown by Atserias, Bulatov and Dawar [4]
that solvability of affine equations over any fixed finite Abelian group is not definable by any
sentence of IFPC. In particular, this implies that IFPC is not expressive enough to define
solvability of systems of linear equations over a fixed finite field; a problem which is easily
decidable in polynomial time by Gaussian elimination. This gives an example of a natural
problem in PTIME that is not expressible in IFPC.

1.2 The importance of linear algebra

In recent years, various studies have pointed to the importance of linear algebra over finite
fields in marking the boundaries of logically-defined fragments of polynomial time. In [9],
Blass, Gurevich and Shelah studied the problem of determining whether a square matrix has
determinant zero (that is, determining whether or not a matrix is singular). They showed
that for matrices over finite fields, this problem can be defined in IFPC but not in IFP. It
was later observed by Rossman [7] that the actual value of the determinant of a matrix over
a commutative ring of characteristic zero can be defined in the language of choiceless poly-
nomial time with counting, which is another logic that has been studied as a candidate for
capturing PTIME and subsumes IFPC. Blass and Gurevich [7] used this observation to show
that the same logic can also express the determinant of any matrix over a finite field.

Another important problem in linear algebra is the problem of determining the solvabil-
ity of a system of linear equations. Atserias, Bulatovand Dawar [4] showed that the solvability
of affine equations over any fixed finite Abelian group is not definable in IFPC, as mentioned
above. In particular, this shows that IFPC is not expressive enough to define solvability of
linear equations over a fixed finite field. Recall that by elementary linear algebra, a system of
linear equations Ax = b over a field is solvable if and only if rank(A | b) = rank(A), where
(A | b) is the matrix obtained from A by adding the column vector b on the right. This
immediately shows that IFPC is not expressive enough to define the rank of a matrix over a
finite field.

Of course, it can be seen that for all the linear-algebraic problems mentioned — deter-
mining solvability of linear equations, computing determinant or computing rank — there
are well-known polynomial-time algorithms, such as Gaussian elimination. Since fixed-
point logic is known to capture PTIME on the class of finite ordered structures, it follows
that IFP and IFPC can already define each of these problems when given matrices indexed
by ordered sets. Therefore, our interest is specifically in unordered matrices, whose rows and
columns are indexed by arbitrary unordered sets.

More formally, we can view an unordered I x J matrix M over a field F as a function
M : I x] — F, where I and ] are finite non-empty sets that index the set of rows and the
set of columns of M, respectively. By taking I = {1,...,m} and J = {L,..., n} we obtain the
more familiar notion of an m x n matrix; that is, a rectangular array of scalar values from F,
with m rows and n columns that are ordered by the natural ordering of the integers. Most
natural matrix properties from linear algebra, such as determinant and rank, are invariant
under simultaneous permutation of the rows and columns of the matrix and are therefore
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well-defined for matrices indexed by unordered sets. This is because these matrix properties
are in fact properties of the underlying linear map that the matrix represents and the linear
map is invariant under a permutation of the chosen vector space bases.

1.3 Contributions of this thesis

The results mentioned above illustrate that IFPC is unable to express some quite natural
linear-algebraic properties, such as solvability of linear equations over a finite field. This
suggests that problems in linear algebra might be a possible source of new extensions to
fixed-point logic, in an attempt to find a logical characterisation of PTIME. In this thesis we
follow this line of inquiry by systematically studying the descriptive complexity of various
polynomial-time problems in linear algebra.

The main body of this thesis consists of six chapters. After reviewing some preliminaries in
Chapter 2] we consider in Chapter [3|the extent to which IFPC can express linear algebra. By
the work of Atserias et al. [4]] we know that the rank of matrices over finite fields is not defin-
able by any sentence of IFPC. However, we show that many other natural matrix properties
are in fact definable in this logic. Specifically, we show that IFPC can define the characteristic
polynomial (and hence determinant) of any matrix over a finite field, over the ring of integers
or over the field of rational numbers. Moreover, we show that for rational-valued matrices,
IFPC can already define the rank and the minimal polynomial.

These results establish that the inability to define matrix rank over finite fields is a funda-
mental barrier that separates IFPC from PTIME, just like the inability to count is a funda-
mental property that separates IFP from PTIME. In fact, computing rank can be understood
as a generalised form of counting which counts the dimension of a definable vector space
rather than the cardinality of a definable set. This suggests that the key weakness of IFPC is
that the form of counting it incorporates is too weak. To address this deficiency, we define in
Chapter [4]an extension of inflationary fixed-point logic by operators for expressing the rank
of definable matrix relations over finite fields of prime cardinality. The resulting logic IFPR
is at least as expressive as IFPC. This is because counting can be simulated by rank operators
using the observation that the rank of a diagonal matrix is precisely the number of non-zero
entries along the main diagonal. Furthermore, we show that IFPR can define solvability of
linear equations over any finite field. Together with the fact that IFPR has polynomial-time
data complexity (that is, the queries it defines can be decided in PTIME), we establish that
IFPC s IFPR £ PTIME. This illustrates that IFPR is a candidate logic for PTIME. Finally,
we show that rank logics have a strict arity hierarchy, where the arity of a rank operator is
the number of distinct variables that it binds. This contrasts IFPR with the counting logic
IFPC, for which it can be shown that unary counting operators suffice to define counting in
any arity [23]. For instance, a counting term #,,¢(x, y), expressing the number of pairs that
satisfy the formula ¢(x, y), is equivalent to the term

> #y0(x,9),

which can be defined by a formula of IFPC.

To understand the inherent expressive power of rank operators, we study such operators
in the presence of weaker logics in Chapter[5} First-order logic with rank (FOR) is the ex-
tension of first-order logic by rank operators over finite fields of prime cardinality. Despite
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lacking the ability to formalise inductive definitions, it turns out that this logic is quite ex-
pressive. In particular, we show that two of the examples showing that IFPC £ PTIME—the
problem of deciding the graph query of Cai, Fiirer and Immerman and the problem of de-
ciding isomorphism of multipedes—are both definable in FOR. This result illustrates that
these two examples are really just clever ways of encoding systems of linear equations into
complex combinatorial structures. We also consider the descriptive complexity of first-order
rank logics over ordered finite structures by proving that for each prime p, FOR, captures
MOD,L and that FORg captures L, which are natural complexity classes that characterise
different levels of logarithmic space complexity. Here FOR, is the fragment of FOR that only
has rank operators over the prime field GF, and FORg is the extension of first-order logic
by rank operators for expressing the rank of rational-valued matrices.

In Chapter [6] we develop Ehrenfeucht-Fraissé-style pebble games for rank logics, which
gives us a game-based method for proving inexpressibility results for FOR and IFPR. The
game protocol that we introduce is based on partitioning the game board into a number of
disjoint regions, according to some linear-algebraic criteria, which then limits the possible
placement of game tokens on the board. This method of partitioning the game board turns
out to be quite flexible and can be used to give a game description of a very generic family of
logics, as we illustrate.

In Chapter[7we establish the first inexpressibility results for rank logics. Writing IFPR .,
to denote the fragment of IFPR restricted to rank operators of arity at most m over GF,
with p prime, we show that for all distinct primes p and gq, IFPR,;; # IFPRy; over finite
structures. The proof of this result combines linear algebra with an application of the game
method developed earlier, played on a pair of highly symmetric combinatorial structures.

Finally, we conclude our discussion in Chapter [8|by summarising our major results and
highlighting some of the open problems and future work in this area.

1.4 Previously published work and collaborations

The work in several chapters of this thesis was done in collaboration and we conclude this
introduction by acknowledging these contributions.

The definition and initial study of rank logics arose through collaboration with Bastian
Laubner, Anuj Dawar and Martin Grohe, and was presented at the 24th IEEE Symposium
on Logic in Computer Science [I7]. Parts of this work appear in Chapter [3] (definability of
the characteristic polynomial over Z, Q and prime fields; definability of matrix rank over
Q), Chapter (4| (definition of rank operators and rank logics; solvability of linear equations
given by terms or formulae; definability of deterministic and symmetric transitive closure
operators; arity hierarchy of rank logics for characteristic two) and Chapter 5] (definability of
the CFI graph query; capturing result for MOD,L on ordered structures).

An introduction to the rank-partition games was presented jointly with Anuj Dawar at a
workshop on Logical Approaches to Barriers in Computing and Complexity [I8] and a more
general overview was also included in a chapter in Studies in Weak Arithmetics [19], which
was also co-authored with Anuj Dawar.



Chapter 2

Definitions and preliminaries

In this chapter we provide the necessary background from mathematical logic, matrix the-
ory, algebra, and complexity theory. Apart from where we introduce matrices indexed
by unordered sets, all the definitions we consider are standard. Readers familiar with the
material might therefore only want to refer back to individual definitions at a later point.

2.1 Basic notation

We write N and Ny for the positive and non-negative integers, respectively. For m, n € Ny,
let [m,n]:={l eNg| m <1< n}and [n]:=[L, n]. We often denote tuples (vy,...,vy) by v
and denote their length by ||¥|. It is assumed that the components of a k-tuple are indexed
from1,...,k. If v = (vy,...,vx) is a k-tuple of elements from a set X, i € [k] and w € X,
then we write v for the tuple obtained from v by replacing the i-th component with w;
that is, 17% = (V1,...,Vi-1, W, Vi41,...,V¢). This notation can be extended to describe the
replacement of more than one component, so for instance 17%% = (17%)% for u,w € X and

i,je[k].Ifi=(i...,im) € [k]™ is a tuple of distinct integers, m < k, then we write X | i
to denote the m-tuple (x;,,...,x;, ).

IfX=(xp,...,x,)and y = (y1,..., ym) are tuples of elements, then we often write X U y
to denote the set of elements {x1,..., Xy, Y1, -> Ym }-

If X is a set, then we write o (X) to denote the power set of X; that is, the set of all subsets of
X. Similarly, we write g, (X) to denote the set of all finite subsets of X.

2.2 Logics and structures

A vocabulary (also called a signature or a language) 7 is a finite sequence of relation and
constant symbols (Ry, ..., Rk, c1, ..., ¢;). Every relation symbol R; has a fixed arity ari(R;) €
N. We consider both vocabularies that contain no constant symbols as well as vocabularies
that contain no relation symbols; the empty vocabulary is one particular example. If 0 and 7
are vocabularies, then we write o C 7 to denote that every relation and constant symbol that
appears in ¢ also appears in 7.



2.2. Logics and structures 7

2.2.1 Structures

Let 7 be a vocabulary. A 7-structure A = (U(A), Rf‘, . ,R‘k‘, cf‘, ey cf‘) consists of a non-
empty set U(A), called the domain of A, together with relations R* ¢ U(A)™(®) and con-
stants c;.‘ € U(A) foreach1<i < kand 1< j < I. The elements of the set U(A) are called the
elements of A and we define | A|, the cardinality of A, to be the cardinality of U(A).

If 7 and o are vocabularies with o € 7, and A is a 7-structure, then we write A|o to denote
the o-reduct of A, which is the structure obtained from A by forgetting the interpretations
of the symbols and constants that are in 7 but not in o.

Unless otherwise stated, all structures are assumed to be finite. We write fin[ 7] for the
class of all finite structures of vocabulary 7. Following Otto [58], we also consider finite
structures with an additional tuple of parameters. We denote the class of all 7-structures
with fixed tuples of r € N parameters by:

fin[7;7] := {(A,d) | A efin[r], d € UA)}.

2.2.2 Logics

A logic L consists of a mapping that assigns for each vocabulary 7 a set of formulae L[ 7], and a
satisfaction relation =1 between structures and formulae (possibly with an assignment to any
free variables, as we discuss in more detail below). We do not require a formal definition of ‘a
logic” here as we merely use the term in the abstract to generalise some common definitions
that apply to the specific logics we consider in this dissertation; for instance, first-order and
inflationary fixed-point logic'.

We recall the definition of first-order logic (FO). A term of first-order logic over a sig-
nature 7 is either a symbol from some countable collection of (first-order) variables, or a
constant symbol from 7. We define the set FO[ 7] of first-order formulae over 7 to be the
smallest set containing the atomic formulae, ¢; = t and R(ty,...,ty), where each t; is a
term and R a relation symbol from 7 of arity m, which is closed under the operations of
negation, conjunction, disjunction and universal and existential quantification. All the log-
ics we consider hereafter will be extensions of first-order logic, defined via explicit rules for
formula-formation and matching rules for semantics.

In general, we consider logics whose formulae may contain both first-order and second-
order variables (also called relation variables), where each second-order variable has a pre-
scribed arity. We commonly use lower-case letters x, y,z,... to denote first-order vari-
ables and use upper-case letters X,Y,Z,... to denote second-order variables. We write
free(¢) to denote the set of free variables of ¢, where ¢ is a formula of a logic L. For a
tuple ¢ = (¢1,..., 9x), where each ¢; is a formula, we write free(¢) := U~ free(p;). A
formula without free variables is a sentence. We commonly annotate formulae with tuples of
variables ¢(xi, ..., xg, X, ..., X;) to indicate that all the variables xi, ..., x; and Xj, ..., X|
are distinct and that free(¢) € {xy,...,xk, X1, ..., X; }. The same notation applies in exactly
the same way to terms of L.

Remark. Throughout, we commonly write (x # y) as a shorthand for the formula —~(x = y).

"The study of abstract extensions of first-order logic is known as abstract model theory. This field was initiated
by Lindstrom [55], whose aim was to develop a single concept whose instances would be the various known
extensions of first-order logic, such as infinitary logic and logics with inductive definitions. For more background
on abstract model theory, see e.g. Barwise and Feferman [6].
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2.2.3 Assignments

Let 7 be a vocabulary and let A be a 7-structure. An assignment in A is a function « that
associates an element a(x) € U(A) with each first-order variable x and associates an n-ary
relation a(X) € U(A)" with each second-order variable X of arity n. Intuitively we think of
« as assigning the meaning a(x) to a variable x. We extend « to a function over terms by
setting a(c) = c? for each constant symbol ¢ € 7. We also let a(%) := (a(x1), ..., a(xy)) for
a k-tuple of variables ¥ = (x1,...,x). Finally, if € U(A)F, then we write (x% to denote the
assignment obtained by setting x; — a;, for i € [k],and y » a(y) forall y ¢ {x,...,x;}.

The semantics of a logic L over 7-structures is defined over pairs (A, a), where A is a
7-structure and « is an assignment in A. We write A =1 ¢[a] to denote that A satisfies the
formula ¢ under the assignment a. Of course, the exact definition of the relation |, depends
on the logic in question; as an example we note that for all the logics that we consider, an
atomic formula R¥ is satisfied in A if a(¥) € R*. When the logic L is clear from the context,
we omit the subscript to the satisfaction relation. Suppose free(¢) € ¥ U X, where X =
(x1,...,x¢)and X = (X, ..., X;) are tuples of first- and second-order variables, respectively.
Ifd = (ay,...,a;) are elements from U(A) and R = (R,...,R)) are relations over U(A),
with R; € U(A)ari(x"), then we write

AEgla/x1,...,ar/x, R/ X1, ..., Ry /X ],

or A £ ¢[d/%,R/X] for short, to denote that ¢ is satisfied in A by assigning a; for x; and
Rj for Xj, for each i and j. Often we omit the named variables when they are clear from the
context, and simply write A = ¢[d, R]. Finally, when free(¢) = & then we write A & ¢ to
denote A E ¢[@].

We write
o(¥)* :={d e UA)FI | A g[a]} c U(A)M

to denote the relation defined by a formula ¢(X) in a structure A, where free(¢) < X. Simi-
larly, we write
(E)A = (@ ta]*) | d e U(A)T) € ga)

to denote the graph of the function defined by a term #(X) in a structure A, where free(t) ¢ X.
We also consider relations defined by omitting named variables from a particular assignment
over a structure A. Let ¢(X) be a formula of L[ 7], where X is a k-tuple of variables. For an
integer m < k, consider an m-tuple i = (i1, ..., i,) € [k]™ of distinct elements, indexing
variables in X. Then for each finite 7-structure A and k-tuple a of elements from U(A),
define

pla]* 1= {(ctr-..rcm) € UA)" | A= p[aDea]}

We can also define t[@]A } i for an L-term ¢ completely analogously.

2.2.4 Definable classes and queries

If ¢ is a sentence in vocabulary 7, then we write
Mod(¢) :={A|Acfin[r]and A ¢}

to denote the class of finite models of ¢.
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Definition 2.1 (Definable classes of structures). Let 7 be a vocabulary and let L be a logic.
A class K of finite 7-structures is said to be definable in L if there is a sentence ¢ € L[] for
which it holds that Mod(¢) = K. u

We also consider queries defined by formulae. The following definition is adapted from
Libkin [52].

Definition 2.2 (Queries). An m-ary query, m > 0, on 7-structures is a mapping Q that
associates with every A € fin[7] a subset of U(A)™ and is closed under isomorphisms; that
is, if A and B are finite 7-structures with f : A 2 B an isomorphism, then Q(B) = f(Q(A)).

We say that an m-ary query Q over 7-structures is L-definable if there is an L[ 7]-formula
¢(x) with [X| = m, such that for every A € fin[7]:

Q(A) = p(x)* = {ac UA)" | AF g[d]}.
|

It is often convenient to consider nullary (that is, 0-ary) queries separately. In that case we
naturally identify nullary relations with Boolean values; that is, we consider U(A)® as a one-
element set which has only two subsets, which we identify as true and false. In this sense, a
nullary quary on 7-structures is a mapping Q : fin[7] — {true, false} which is closed under
isomorphism; that is, if A and B are finite 7-structures with A 2 B, then Q(B) = Q(A). Such
queries are known as Boolean queries.

We commonly associate a Boolean query Q on 7-structures with the isomorphism-closed
class of finite structures C defined by

Cq:={Acfin[7]| Q(A) = true}.

In this case, it can be seen that a Boolean query Q is defined by a sentence ¢ if and only if
Cq = Mod(¢). In the following we often do not distinguish between a Boolean query Q and
the associated class of structures Cq; that is, we will often identify a Boolean query with the
associated class of structures.

Using the language of queries, we can now formally define relations between logics, indicat-
ing their relative expressive power over finite structures. We say that a logic L; is (at least) as
expressive as a logic L,, and write L, £ L, if every query definable in L, is also definable in
Li. We write L = L, if L; £ L, and L, < L;. Finally, we write L, £ L; if L, £ L; and there is a
query definable in L; which is not definable in L,.

2.2.5 Interpretations and logical reductions

We frequently consider ways of defining one structure within another in a logic L. Recall
that an equivalence relation ~ is a congruence for some n-ary relation R if for all n-tuples x
and y: A\; x; ~ yi > (RX < Ry).

Definition 2.3 (Interpretations). Consider two signatures ¢ and 7 and a logic L. An m-ary
L-interpretation of T in o is a sequence of formulae of L in vocabulary o consisting of:

o aformula 6(x);
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o aformula (X, y);
« for each relation symbol R € 7 of arity k, a formula gr(%i, ..., Xx); and

o for each constant symbol ¢ € 7, a formula y.(x),

where each X, y or X; is an m-tuple of free variables. We call m the width of the interpretation.
We say that an interpretation ® associates a 7-structure B to a o-structure A if there is a
surjective map h from the m-tuples {d € U(A)* | A & 8[d]} to B such that:

o h(ay) = h(ay) if, and only if, A = €[dy, a2 |;
« RB(h(a)),...,h(d;)) if, and only if, A = @g[dy, ..., dr];
+ h(ad) = B if, and only if, A F y.[d].

Note that an interpretation ® associates a 7-structure with A only if ¢ defines an equivalence
relation on U(A)™ that is a congruence with respect to the relations defined by the formulae
or and y.. In such cases, however, B is uniquely defined up to isomorphism and we write
®(A) :=B. ]

Hereafter we are only interested in interpretations that associate a 7-structure to every A.
We say that B is L-definable over A if there is an L-interpretation (which does not depend on
either A or B) that associates B with A.

We can now define logical reductions from one class of structures to another.

Definition 2.4 (Logical reductions). Let C be a class of o-structures and D a class of 7-
structures closed under isomorphisms. An L-interpretation ® of 7 in ¢ is said to be an L-
reduction from C to D if for every o-structure A it holds that A € C if and only if ®(A) € D.
|

In the following, we will focus mostly on first-order reductions. In particular, most of the
logics we consider in this thesis are closed under first-order reductions, in the following
sense.

Definition 2.5 (Closure under first-order reductions). Let L be alogic. We say that L is closed
under first-order reductions if and only if the set of Boolean queries definable in L is closed
under first-order reductions; that is, if C is a Boolean query definable in L[¢] and © a first-
order interpretation of 7 in ¢, then the Boolean query {®(A) | A € C} is definable in L[ 7].
|

2.2.6 Types and equivalences

Let L be a logic and A a 7-structure. The L[7]-type of a tuple d = (ay, . .., a;) of elements of
A is the class of all L-formulae in k free variables that are satisfied by d in A:

tp(L; A, d) := {go(k’) el[r] |AE go[ﬁ]},

where x is a k-tuple of variables. We often use Greek symbols «, 3,y,... to denote types.
We write Tp(L; 7, k) for the class of all L[ 7]-types in k free variables over finite 7-structures,
that is
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Tp(L; 7, k) := {tp(L; A, d)| (A, a)¢ ﬁn[T;k]}.

Let (A,d),(B,b) € fin[r;k], k > 1. We say (A,d) and (B, b) are L-equivalent, and write
(A,d) =% (B,b), if tp(L;B,d) = tp(L;B,b). In other words, (A,d) and (B,b) are L-
equivalent if 4 and b satisfy exactly the same L-formulae over A and B respectively. Similarly,
we write A =' B if A and B satisfy exactly all the same L-sentences.

If « € Tp(L; 7, k) and d is a k-tuple of elements from a 7-structure A, then we say that d
realises o in A iftp(L; A, ) = a. The atomic type of d over A, atp(A, a), is the type tp(L; A, a)
when L is taken to be the quantifier-free fragment of first-order logic.

2.2.7 Lindstrom quantifiers and extensions

Generalised quantifiers in the sense of Lindstrom [54] have been studied as a way to increase
the expressiveness of a logic by a prescribed query. Let 0 = (Ry,...,R;) be a vocabulary
where each relation R; has arity ;. Consider a class K of o-structures that is closed under
isomorphism; that is, for g-structures A and B, if A € I and A 2 B, then B € }C. With K
we associate a Lindstrom quantifier Qi whose type is the tuple (ny, ..., n;). The arity of the
quantifier Qy is the value of max{n;, ..., n;}. For alogic L, define the extension L(Qx ) by
closing the set of formulae of L by introducing the following formula-formation rule:

if ¢1,. .., ¢; are formulae of L(Qx), X1, . . . , X; tuples of variables where x; has
length #;, then the expression QxX...X; (¢1,...,¢;) is a formula of L(Qx)
with all occurrences of x; in ¢; bound.

The semantics of the Lindstrom quantifier Qy is defined such that
AE QxXi...% (¢1,..., ;) ifand only if (U(A); p1(1)A, ..., 0;(%)) € K,

where (U(A); 1(%)%, ..., ¢;(%)?) is interpreted as a o-structure.

Example 2.6. The existential quantifier 3 can be seen as the Lindstrom quantifier associ-
ated with the class of structures K over a signature with one unary relation symbol R, given
by K := {(A,R*) | RA c Aand R*  &}. m

Similarly we can consider the extension of a logic L by a collection Q of Lindstrom quantifiers.
The logic L(Q) is defined by adding a rule for constructing formulae with the quantifier Q,
for each Q € Q, to the list of formula-formation rules for L. The semantics is defined by
considering the semantics for each quantifier Q € Q, as above.

Often we consider families of quantifiers generated under some uniformity condition.
Here we focus on the following notion of uniformity, due to Dawar [15]. Let K be a class
of structures over vocabulary ¢ = (Ry,...,R;). For each k € N, let o} be the vocabulary
(Rk1>---» Ri,1) where the arity of Ry ; is k - n;. Let Ky be the class of o -structures defined
by

Ki={(AS,....8) | (A%, S,,...,8) e K},
where (A%;S),..., ;) is seen as a o-structure with universe AX. If Qy is the Lindstrém quan-

tifier associated with Ky then we say that the sequence {Qy | k € N} is uniformly generated
by K.
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Definition 2.7 (Uniform sequences of quantifiers). A countable collection Q of Lindstrém
quantifiers is a uniform sequence if there is a class of structures K such that Q is uniformly
generated by K. |

2.3 Logics with inductive definitions

We review some common extensions of first-order logic with operators for formalising in-
ductive definitions. For a more detailed description of any of these logics, see e.g. Ebbinghaus
and Flum [23] or Libkin [52].

2.3.1 Inflationary fixed-point logic

Let ¢(R, X) be a formula in the vocabulary 7, where R is a k-ary relation variable and X is a
k-tuple of variables. Over a pair (A, «), where A is a finite 7-structure and « an assignment
in A, the formula ¢(R, X) defines an operator

FSM) 1 0(UA)F) > p(U(A)F)

which maps a relation S ¢ U(A)k interpreting the relation variable R to the relation
A, - k a k
F(8) = {a e UA)* | Ak p[add]} c U(A).
This allows us to define an increasing sequence of relations on A:
X0 = <,
, . A, ,
X=X U EEM (X7

The inflationary fixed point of Fé,A’a), written ifp(Fé,A’“) ), is the limit of this sequence. It can
be seen that if |A|| = # then this limit will be reached after at most n* stages.

The terms and formulae of inflationary fixed-point logic (IFP) in vocabulary 7 are defined
inductively by extending the rules of first-order logic with the following rule.

Let ¢(R, X) be a formula, where R is k-ary and ¥ is a k-tuple of variables. If f is
a k-tuple of terms then

[ifpg 291 (F)
is a formula, with free( [ifpy ;¢](f) ) := (free(¢) \ (¥ UR)) U free(?).

The semantics of IFP in vocabulary 7 is defined inductively for all pairs (A, a), where A is
a finite 7-structure and « an assignment in A, by extending the semantics rules for FO with
the following rule for the ifp-operator:

A rep ([ifpr 9] (7)) [a] iff a(f) € ifp(Fq()A)“)).
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2.3.2 Transitive closure logics

Let ¢(%, y) be a formula in vocabulary 7, where X and y are k-tuples of variables. Given a
pair (A, a), where A is a finite 7-structure and « an assignment in A, write é;ﬁ:? to denote

the graph on vertex set U(A)¥ with the set of edges

{(a.0) | AF g[agt]} < UA) < U(A)".

S

Similarly, write G((pp;’o}) and G(E)A;C’o}) to denote the symmetric closure and the deterministic part

"}) is the graph obtained from é;l}’f})

only those edges (u,v) where u has out-degree one.

~(Asa) . . A .
of G(Mj , respectively. To be precise, G(p,i by retaining

The terms and formulae of transitive closure logic (FO+TC) in vocabulary 7 are defined in-
ductively by extending the rules of first-order logic with the following rule.

Let ¢(%, ) be a formula, where X and y are k-tuples of variables. If f and s are
k-tuples of terms then

[tez, 5] (£:5)
is a formula, with free( [tcz j9](7,5) ) = (free(p) \ (XU y)) Ufree(f) Ufree(s).

The semantics of FO+TC in vocabulary 7 is defined inductively for all pairs (A, «), where
A is a finite 7-structure and « an assignment in A, by extending the semantics rules for FO
with the following rule for the tc-operator:

A Eroire ([tcngo] (?, E)) [a] iff (cx(?), «(5)) is in the transitive closure of G;ﬁ;)‘?.

Similarly, we define symmetric transitive closure logic (FO+STC) and deterministic transitive
closure logic (FO+DTC) in exactly the same way as FO+TC above, except that instead of
formulae involving the tc-operator, we have formulae with operators stc and dtc, respectively.

The semantics of these operators is defined like the semantics of the tc-operator, except now
@)
5
for the dtc-operator.

we consider reachability in the undirected graph G for the stc-operator and reachability
0.X

@)

in the deterministic graph G;‘;’ 5

2.4 Many-sorted logics and structures

We occasionally consider structures with a number of distinct domains (called sorts) and
strongly typed logics to match, in which the variables range over different domains. Gen-
erally, we try to avoid the notational overhead caused by the presence of sorts as much as
possible, and only mention the typing of variables when it is not obvious from the context.

2.4.1 Many-sorted structures

An m-sorted vocabulary is a vocabulary 7 = (Ry, ..., Ry, c1, ..., ¢;) where every relation or
constant symbol X € 7 has an associated type, denoted by type(X). Thatis, if R € Tisa
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relation symbol of arity n, then type(R) € [m]", and if ¢ € 7 is a constant symbol then
type(c) € [m]. An m-sorted structure

A A A A
A=((Si,...58m)s RS .. R, s Cp)
consists of m non-empty sets Sy, . .., Sy, together with

+ relations RA € Sy, x---x S;, for each relation symbol R of arity n and type (t, ..., t,) €
[m]"; and

« constants ¢ € S; for each constant symbol c of type t € [m].

We write U(A) := U}, S; for the domain of A. When m = 1 then we simply write A =
(U(A), R}, ..., R, ..., ct) instead of A = ((U(A)), R, ..., R, cft,..., c}'), to be con-
sistent with our notation from before.

2.4.2 Many-sorted logics

Let L be a logic. We can extend L to a many-sorted logic as follows. The m-sorted logic L,,
is L together with a function type that associates every first-order variable x with an integer
type(x) € [m] and associates every second-order variable X of arity n with a tuple type(X) €
[m]". The semantics of L,,, defined over m-sorted structures, are just like the semantics of L,
except that any assignment « over an m-sorted structure A with sorts Sy, .. ., S, must satisfy

type(x) =t < a(x) € Sy,
for every first-order variable x and
type(X) = (f1,...,ty) < a(X) €Sy x ..., xSy,

for every second-order variable X of arity #.

2.5 Logics with counting

In this section we define extensions of first-order and fixed-point logic with operators for
expressing the cardinality of definable relations. In our definition of these counting logics, we
follow the convention of Grohe [31]. That is, both counting logics have variables that range
over the non-negative integers, as well as variables ranging over the elements of a structure,
and terms and formulae are interpreted over countable-infinite structures that are obtained
by extending a finite structure with a copy of the integers. To ensure that these logics define
only decidable queries, all variables ranging over integers must be bound by terms when they
are introduced. Other authors [23,/52] consider counting logics that have number variables
which only range over a finite subset of the integers. By bounding quantification over the
integers as described above, it can be seen that two formalisms are in fact equivalent over
finite structures (see e.g. [31] for further details).

Because both counting logics and other ‘numerical logics’ of similar kind will play a
prominent role in this thesis, the definitions that follow are provided in full detail.
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2.5.1 First-order logic with counting

First-order logic with counting (FOC) has two kinds of variables: element variables, that
range over the domain elements of a structure, and number variables, that range over the non-
negative integers. We commonly use lower-case Latin symbols x, y, z, ... to denote element
variables and lower-case Greek symbols 7, y,v,... to denote number variables. Generally,
we allow for many-sorted variants of FOC. For instance, in (m + 1)-sorted FOC we have
m + 1 variable types, with number variables assigned type (m + 1) and variables of all other
types collectively referred to as element variables (when m > 1 the actual typing of element
variables will usually be clear from the context). In addition, we have second-order variables
X,Y,Z,...,where the type of a second-order variable X is defined as usual.

Let 7 be a vocabulary which does not contain any of the symbols in {<, +, -, Oy, Iy } (oth-
erwise, simply rename the conflicting symbols in 7). Terms of FOC of vocabulary 7 are of
two kinds: an element term is an element variable or a constant in 7, and a number term is
a number variable, one of the constant symbols in {Oy, 1y }, an application of the functions
+ or - or a counting term, expressing the cardinality of a definable relation. The terms and
formulae of FOC of vocabulary 7 are defined inductively by the following rules.

E.1 All element variables x are element terms, where we let free(x) := {x}.

E.2 All constants ¢ € 7 are element terms, where we let free(c) := @.

N.I All number variables v are number terms, where we let free(v) := {v}.

N.2 The constants Oy and 1y are number terms, where we let free(Oy) := free(ly) = @.

N.3 If s, t are number terms, then the expressions (s + t) and (s - t) are number terms,
where we let free(s * t) := free(s) U free(t) for x € {+,-}.

El Ifs, t are number terms, then the expressions s = ¢ and s < t are formulae, where we
let free(s * t) := free(s) U free(t) for € {=,<}.

E2 Ifs, t are element terms, then the expression s = t is a formula, where free(s = t) :=
free(s) U free(t).

E3 IfR € Tisa k-ary relation symbol and £ = (¢, ..., t;) is a tuple of element terms, then
Rt is a formula, where we let free(Rt) := free(f).

F4 If X is a k-ary relation variable and £ = (..., t; ) are terms whose type matches that
of X, then Xt is a formula, where we let free(X¢) := {X} U free(?).

E5 If ¢ is a formula and x an element variable, then 3x.¢ and Vx.¢ are formulae, where
we let free(3x.¢) := free(Vx.¢9) = free(p) ~ {x}.

E5 If ¢ is a formula, v is a number variable and ¢ is a number term, then v < t.¢ and
Vv < t.¢ are formulae, where we let free(3v < t.¢) := free(Vv < t.¢) = (free(¢) \

{v}) U free(t).

E6 If ¢ and y are formulae then the expressions ¢, ¢ Ay, and ¢ v y are formulae, where
we let free(—¢) := free(¢) and free(¢ * v) := free(¢) U free(y) for * € {A, V}.
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C If ¢ is a formula and x is an element variable then #, ¢ is a number term, where we let
free(#,¢) = free(p) ~ {x}.

The semantics of FOC of vocabulary 7 is defined over numerical structures of vocabulary ,
which are 7-structures expanded with a copy of the non-negative integers.

Definition 2.8 (Numerical structures). Let 7 = (Ry,..., R, c1, ... ;) be avocabulary which
does not contain any of the symbols in {<,+,-,0y,1x}. Write 7 := 7U {<,+,-, 05, 1N},
where < is a binary relation, + and - are binary functions and Oy and 1y are constants. For
any m-sorted 7-structure A, with sorts Sy, . .., S;;, we write A* to denote the (m +1)-sorted
T*-structure

N
(St SmNo), R R et et Mo, Mo Bo gl gl

where we view Ny as the set of non-negative integers, disjoint from U(A). Here +¢ and x%0
denote addition and multiplication over Ny, <No is the standard ordering of the integers Ny,
and the constants 0%" and 1%0 denote the first and second elements of Ny, respectively. We
refer to the domain U(A) as the element sort of A* and the last sort Ny as the number sort of

A, ]

Remark. To keep our vocabulary purely relational, we could instead define addition and
multiplication over the number sort as ternary relations R, and R., respectively, instead of
functions + and -. Thus, we could write R, (x, y, z) instead of x + y = z for all numeric terms
x, y and z, and similarly for R.. However, the use of functions does simplify some of our
exposition later and, apart from minor changes to the rules for bounded quantification, it
can be seen the difference between the two representations is purely notational and has no
bearing on the expressive power of our logics.

Formally, the semantics of FOC[ 7] is defined over pairs (A*, «), where « is a variable as-
signment in A*. We write ¢ for the satisfaction relation between numerical structures
on the one hand and on the other hand FOC formulae and assignments. If ¢ is a term, then
we write a(t) to denote the value that is assigned to ¢ over A*?. Number terms are assigned
values in Ny and element terms are assigned values in U(A). The constants Oy and 1y are
interpreted as the integers zero and one, respectively. For number terms s and ¢, we define
a(s+1t)=a(s)+a(t)and a(s-t) := a(s)-a(t), where the right-hand side of each equation
denotes an arithmetic expression over the integers. We extend the definition of type from
variables to terms, and define the type of a term ¢ to be k if t takes values in the k-th sort of
A*. For a formula ¢, the satisfaction relation A* =5S2 ¢[«] is defined in the obvious way,
with comparison of number terms interpreted by comparing the respective integer assign-
ments over Ny. In particular, when ¢ is of the form Jv < t.y(v), for some formula y and
':num

number term £, then we define A* ERSE (Jv < t.y(v))[«] if and only if there is an integer
m € [0, a(t)] such that

A" Eroc y(v)[af].
We also commonly write Jv < t.¢(v) and Vv < t.¢(v) as shorthand for Jv < t.(v # t) Ap(v)
and Yo < t.(v # t) - ¢(v), respectively.
Finally, consider a counting term of the form #, ¢, where ¢ is a formula and x an element
variable. Here the intended semantics is that #,¢ denotes the number (i.e. the member of

*Occasionally, when ¢ has no free variables, we write t*" to denote «(t) where « is any assignment in A*.
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the number sort) of elements that satisfy the formula ¢. More formally, the semantics of
counting terms of FOC over vocabulary 7 is defined as follows:

a(#x¢) = |[{a e UA) | A rgoc plag ]

While we interpret terms and formulae of FOC over countable-infinite 7*-structures, we are
ultimately interested in queries defined over finite 7-structures. For that purpose, we define
the satisfaction relation =poc between formulae of FOC[ 7] and structure-assignment pairs
over vocabulary 7 as follows.

Definition 2.9. Let 7 be a vocabulary and let ¢ be a formula of FOC[7]. Suppose the free
variables of ¢ contain no number variables and no second-order variables with a component
of number type. Then for any 7-structure A and any assignment « over A, we define

A Froc ¢[a] == A" Epoc ¢[al.

That is, ¢ is satisfied in A with assignment « if and only if ¢ is satisfied in the number ex-
pansion A* with assignment «. u

Example 2.10. Over any finite structure, the number term f.,,q = #,(x = x) denotes the
cardinality of the domain of the structure. The following sentence in the language of graphs
now states that all vertices have an even degree:

(P =Vx 3[1 < tcard (#y(E(x’y)) = # +#)

It follows that on the class of all finite graphs, ¢ defines exactly the class of Eulerian graphs. m

Later we will make use of the following basic lemma, whose proof is trivial.

Lemma 2.11. There is a formula prime(v) of FOC, where v is a number variable, such that for
all structures A and all assignments o over A*,

A" ERSE prime(v)[a] < a(v) is a prime number.
Proof. The formula

comp(v) = Iy < v Iy < v.((l <) A(p1-p2= v))
says that v has a proper factor. Hence, prime(v) = ~comp(v). O

Finally, we note that the reason why primality can be expressed quite easily in FOC has more
to do with the fact that integers described by number terms are tiny (i.e. represented in unary)
than it has to do with the actual expressive power of the logic.

2.5.2 Fixed-point logic with counting

We also consider the logic obtained by extending FOC with inflationary fixed-point opera-
tors over numerical structures.
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Definition 2.12 (Fixed points in numerical structures). Let ¢(R, x) be a formula in vocabu-
lary 7, where R is a k-ary relation variable of type (K, ..., h;) and X is a k-tuple of variables
of types hy, ..., hy, respectively. Let f be an I-tuple of number terms, where [ is the num-
ber of distinct number variables in X. Let f : {xj,...,x;} — [I] be the partial function
which maps each number variable in x to its index amongst the number variables in X; that
is f(x;) = jif x; is a number variable that occurs as the j-th number variable in X. Given a
finite 7-structure A and an assignment « in A*, write m; = a(t;) for i € [I]. Over (A*, «),
the pair (¢(R, %), f) defines an operator

A, N N
FE&D o (UAN)") > p(UAT)")
which maps a relation S ¢ U(A*)* interpreting the relation variable R to the relation
FA ()= {GeByx-x By | A" = p[aS 4]}
o.f = 1 k @ Rx15

where
~ {[O, mf(x,-)] c Ny if x; is a number variable,

U(A) otherwise.

Here the number terms ¢ ensure that F;A?’a) (S) is a finite set. This now allows us to define

an increasing sequence of relations on A™:

X0 .= .,
x*= xTu A (X7
@,t

The inflationary fixed point of F;A{a), written ifp(F;A?’a) ), is the limit of this sequence. It can
be seen that if |A| = n and m = max{my,..., m;} then this limit will be reached after at
most (1 + m)F stages. |

We can now define the logic IFPC, the extension of FOC with operators for defining infla-
tionary fixed points. The terms and formulae of IFPC of vocabulary 7 are defined inductively
by extending the rules of FOC with the following rule.

Let ¢(R, x) be a formula, where R is k-ary of type (hy, . .., hy) and X is a k-tuple
of variables of types hy, .. ., hy, respectively. Let fbean! -tuple of number terms,
where [ is the number of distinct number variables in X. If § is a k-tuple of terms
of types hy, ..., hy, respectively, then

[ifPR,;?sf(P] (5)
is a formula. We let

free( [ifpp ;9] (5) ) := ((free(¢) U free(f)) \ (¥ UR)) U free(5).

Terms and formulae of IFPC are interpreted over pairs (A, «), just as with FOC before. We

write E[gpe for the satisfaction relation between numerical structures on the one hand and
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on the other hand IFPC formulae and assignments. The relation =[ip¢ extends Fpoe, with

the semantics of the ifp-operator defined as follows:

* num . - . - . A,(x
A" e ([i£pa 0] (9))[a] iff a(S) € ifp(Fy ™).

As with FOC before, we define a satisfaction relation =ppc between non-numerical struc-
tures A and IFPC formulae with no free number variables by

A Frrpc @la] = A" Erpe ¢[a]

for an assignment « in A. Hereafter, we usually omit the subscripts from =roc and Erppc and
simply write = where it will be clear from the context which logic we are considering.

2.6 Infinitary logics

We write FOF to denote the fragment of first-order logic in which the only variables allowed
are x1,...,x. The infinitary logic £ is obtained by closing FO¥ under conjunction and
disjunction of arbitrary (possibly infinite) sets of formulae. That is, if ® is any set of £*-
formulae, then A ® and \/ @ are formulae of £ that denote the conjunction and disjunction
of the formulae in @, respectively. The intended semantics is that A © is satisfied when all
the formulae in @ are satisfied and V @ is satisfied when at least one of the formulae in
@ is satisfied. We write £¢ := Ug., £F for the infinitary logic in which each formula has
only finitely many variables, taken from the collection {x; | i € N}. We often use variables
X, ¥,2,... instead of x1, x2, x3,... to make formulae more readable. For an excellent refer-
ence on finite-variable infinitary logics, see Otto's monograph [58].

It is noted by Otto [58] that the logic £* can define arbitrarily complex queries. In fact,
he shows that with only two variables, there are non-recursive queries on the class of linearly
ordered structures that can be defined in £2. On the other hand, it can also be shown that
there are queries of very low complexity which are not definable in £“. Such queries often
involve counting in one form or another. For instance, it can be proved using a simple game
argument that over the empty vocabulary, £¥~! cannot define the class of structures having
at least k distinct elements.

Due to these limitations of £, it is natural to consider the extension of infinitary logic
with a collection of counting quantifiers, which are defined as follows. For each natural num-
ber i, we have a quantifier 3%’ which binds a single formula. A logic L extended with counting
quantifiers has the following formula-formation rule, in addition to its usual rules: if ¢ is a
formula and i a positive integer, then 3*’x ¢ is a formula. The semantics of a counting quan-
tifier is defined as follows:

A = 3*'x g ifand only if there are at least i distinct elements a € U(A) such that
(A, a) = 9(x).

We also write 3='x ¢ to denote the formula 3*'x ¢ A =3*"*1x . Similarly, we can define
counting quantifiers 35, 3/ and 3>, We write FOC to denote the k-variable fragment of
first-order logic extended with counting quantifiers and write C* to denote the corresponding
infinitary logic. For each k, it can be shown that FOCF is more expressive than FO* (the k-
variable fragment of first-order logic) and C is more expressive than £, and indeed C® :=
Uk<o C* contains formulae that are not equivalent to any formula of £¢.
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In each of the above cases, the proofs that certain properties are not expressible in the
given logic are most clearly formulated in terms of games. Thus, we can show that there are
properties not definable in £ by means of a variant of the classic Ehrenfeucht-Fraissé game,
which allows for infinitely long plays but with a fixed number of tokens. We discuss game
methods further in Chapter[6] Similarly, there is a game that gives us a method to prove that
there are properties not definable in C*.

The interest in studying these infinitary logics, from the point of view of finite model theory;,
comes from the fact that they have proved useful in analysing the expressive power of fixed-
point logics. This was illustrated by Kolaitis and Vardi [49], who observed that any sentence
of IFP is equivalent to one of £“. Similarly, it can be shown that any sentence of IFPC is
equivalent to one of C* over finite structures (see e.g. [58] for details). Since queries definable
in IFP and IFPC are in PTIME, while £“ and C* can express queries of arbitrary complexity,
it follows that both the inclusions are proper, as stated by the following theorem.

Theorem 2.13. IFP £ L and IFPC 5 C“. O

2.7 Algebra

We recall some basic definitions from abstract algebra, linear algebra and graph theory.

2.71 Common algebraic structures

For reference, we give the definition of some of the basic algebraic structures we will consider
in this dissertation. For further details on any of these topics, see e.g. Lang’s textbook [51]].

Groups. A group is a non-empty set G with one binary operation o that satisfies the fol-
lowing axioms:

o Closure. If a and b are two elements in G, then a o b is also in G;

o Associativity. The operation o is associative, i.e. (aob)oc=ao (boc) foranya,b
and ¢ in G;

o Identity. There is an element e in G, known as the identity element, such that a o e =
eoa =aforanyainG;

o Inverse. The operation o admits inverse elements; that is for any a in G there exists an

element a~!in G, said to be inverse to a, such thataca' =aloa =e.
Often we use the standard symbols for addition (+) and multiplication (-) to denote the group
operation. In the former case we say that the group is written additively and we write 0 or
0 for the identity element and —a for the inverse to an element a in G. In the latter case we
say that the group is written multiplicatively and we write 1 or 1 for the identity element. A
group G is said to be Abelian if its operation o is commutative; that is, if a o b = b o a for all
aand b in G.
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Rings. A ring is a set R with two binary operations, called addition (+) and multiplication
(+), for which it holds that (a) the set (R, +) is an Abelian group with respect to addition (the
additive group of the ring); (b) R is closed under multiplication, multiplication is associative
and there exists an element 1z in R such that a -1z = 1z -a = a for all a € R; and (¢)
multiplication is related to addition by the distributive laws:

a-(b+c)=a-b+a-c

(a+b)-c=a-c+b-c.

As with standard addition and multiplication of numbers, we often omit the multiplication
symbol and write ab to denote a - b, when it is clear from the context. We write —a for the
additive inverse to an element a in R and write a — b as a shorthand for a + (-b), for a
and b in R. Also, we usually write O for the additive identity element of R. Note that our
definition of a ring is strictly a “ring with multiplicative identity” but the distinction will
not be necessary in the following. A ring R is said to be commutative if its multiplication
is commutative. For m € N, we write Z,, for the finite ring consisting of the m integers
{0,...,m —1} where addition and multiplication is defined as the corresponding operation
over the integers modulo m.

An ideal of a ring R is a subset I C R that is an additive subgroup of R and is closed
under multiplication by elements from R; that is, whenever a belongs to R and b belongs to
I, then ab and ba belong to I. For example, in the ring of integers Z, the set of even numbers
27 := {2n| n € Z} is an ideal: it forms a group under integer addition and the product of an
arbitrary integer and an even number is always even.

Let I be an ideal of a ring R. Define an equivalence relation ~; on R by a ~; b if and only
ifa—b e 1. If a is an element of R then we write [[a]]; for the equivalence class of a in R/ ~;.
The quotient ring of R modulo 1 is the set R/I := {[[a]]; | a € R}, with ring structure defined
for all @ and b in R by

[[allr + [[b]l: = [[a + b]l; and [[a]l;- [b]l;r:= [[a- b]]:.

It can be easily verified that this is a well-defined ring, with multiplicative identity [[1g]];.
In particular, it can be seen that R/I is commutative if R is commutative. As an example,
consider the ring Z and the ideal 2Z of even numbers, as above. Then Z/(2Z) is a ring
that contains two elements (equivalence classes): one for the even numbers and one for the
odd numbers. More generally, for m € N, the quotient ring Z/(mZ) contains exactly m
elements. It can be seen that for each m € N, Z/(mZ) = 7Z,, under the isomorphism that
maps the equivalence class of k € Z to the integer k mod m.

Fields. A field is a commutative ring F that contains at least two elements and for which
every non-zero element has a multiplicative inverse. In other words, a ring F is a field if the
set F* := F \ {0r} of non-zero elements of F is a group with respect to multiplication. It
can be seen that the ring of integers Z is not a field (there is no integer x such that 2x = 1)
whereas the set of rational numbers Q is a field, where each non-zero rational number a has

multiplicative inverse é
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Let F be a field. If there is a natural number # such that for any a in F, the element

nxa:=a+a+...a+a,
~—
n times

obtained by adding a to itself n times, is Of then the characteristic of F is the least such n;
otherwise, if there is no such n then F is said to have characteristic zero. It is not hard to
show that the characteristic of any field is either zero or a prime number.

A subfield F of a field E is a subset F ¢ E which itself is a field under the operations
of addition and multiplication defined in E. A field E containing F as a subfield is called
an extension of F. A field extension E of F can be regarded as a vector space over F in the
obvious way (E is the set of vectors, F the field of scalars). The degree of E over F, written
[E : F], is the dimension of E as an F-vector space. A field extension E over F is said to be
finite if [E : F] is finite and infinite otherwise. As an example, the field of complex numbers
C is a field extension of degree two over the field of real numbers R. On the other hand, it
can be seen by a countability argument that R has infinite degree as an extension of Q: the
set Q is countable and every finite-dimensional vector space over a countable set must be
countable, which R is of course not.

Polynomials and polynomial rings. Let R be a commutative ring. We write R[X| for the
set of polynomials in indeterminate X with coefficients from R. It can be seen that R[X]
forms a ring under addition and multiplication of polynomials, called the polynomial ring of
R in indeterminate X. A polynomial f € R[X] is said to be a constant polynomial if there is
an element a € R such that f = a. When F is a field, we consider certain minimal elements
of the polynomial ring F[ X ], defined as follows.

Definition 2.14 (Irreducible polynomial). Let F be a field. A polynomial f € F[X] is said
to be irreducible over F if f has positive degree and for any g, h € F[X], f = gh implies that
either g or h is a constant polynomial. |

2.7.2 Finite fields

A finite field is a field with finitely many elements. A finite field F will have p? elements,
where the prime p is the characteristic of F and d is the degree of F over its prime subfield.
Moreover, it can be shown that for each prime p and each positive integer d, there exists a
finite field with p? elements which is unique up to isomorphism. For further details, see e.g.
Lidl and Niederreiter [53, Chapter 2.1]. We write GF , for the finite field with p? elements.

We write F* to denote the multiplicative group of nonzero elements of a finite field F.
The multiplicative group of a finite field is always cyclic (see e.g. Lang [51, Theorem 5.3]). A
generator of the cyclic group F* is called a primitive element and there are exactly ¢(p — 1)
primitive elements in F, where ¢ is Euler’s totient function (that is, ¢(#) is the number of
integers in [#] which are co-prime to n).

Now consider the prime field F = GFp, where p is prime. Then F = Z/(pZ) = Z, where
the field Z, consists of the integers {0, ..., p — 1}, with addition and multiplication carried
out modulo p, as discussed before. However, when d > 1it is not true that GF .« = Z/( 7)),

the quotient ring of Z by the ideal p?Z. To see this, note that the element p € Z/(p?Z) does
not have a multiplicative inverse in Z/(p?Z). Suppose, towards a contradiction, that g is the
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inverse of p in Z/(pZ),i.e. pg=1 (mod p?). Then

p7pq=p""(pg) = p* (1) = p* £0 (mod p),

but at the same time

p*'pg = (p*"p)q) = p?q=0 (mod p*).

Instead, a standard representation of the elements of GF 4 is obtained as follows. Let K = GF,
be the finite field with p elements. Then for every n > 1, there exists a monic irreducible
polynomial of degree n over K. Indeed, the number N,(n) of such polynomials can be
given explicitly by

1 n
Np(n) = = u(k)p"*,
h k|n
where the Moebius function y : Ny - Nj is defined by

1 ifn=1,
p(n) =1 (-1)" if nis the product of r distinct primes,

0 if n is divisible by a square of a prime.
A rough estimate gives a lower bound of

P _p)>0.
p-1

For more details, see Lidl and Niederreiter [53, Chapter 2]. Now let f € K[X] be a monic
irreducible polynomial f(X) of degree d over K. Then F = K[X]/(f(X)), the quotient of
the polynomial ring K[ X] and the ideal generated by f(X). That is, we can consider the
elements of F to be polynomials of degree less than d. Addition and multiplication in this
representation is carried out by adding and multiplying together polynomials and reducing
the result modulo f(X). Note that in §4.2.2we consider an alternative way to represent the
elements of F, as d x d matrices with elements from the prime field K.

Ny(n) 2~ (p" -

2.7.3 Graphs

A directed graph is a pair G = (V, E) where V is a finite set of vertices and the set of edges E
is an irreflexive binary relation on V. An edge (v, w) € E is considered to be directed from
v to w. In this case, we say that w is a direct successor of v and v is a direct predecessor of
w. We write Now(v) := {w € V | (v,w) € E} C V for the set of direct successors of v and
Nin(v) :={we V| (w,v) € E} ¢V for the set of direct predecessors of v. The out-degree of
a vertex v, degout(v), is the number | Nou(v)| of its direct successors and the in-degree of v,
degin (v), is the number | N, (v)| of its direct predecessors.

A graph is a pair G = (V, E) where the set of edges E is a collection of two-element
subsets of the vertex set V. Thus, a graph can be seen as a directed graph with a symmetric
edge relation. Observe that we consider only simple graphs, that is graphs that are loop-free
and without parallel edges. We often write vw instead of {v, w} to denote an edge between
v and w in a graph G. An edge e € E is said to be incident to v if v is one of the end points of
e, thatis if v € e. The degree of v, deg(v), is the number of edges incident to v. If v € V isa
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vertex of G, then we write N(v) := {w € V | vw € E} C V for the set of neighbours of v and
E(v) := {vw | w e N(v)} < E for the set of edges incident to v. If G is a graph (directed or
undirected), then we write V(G) and E(G) for the vertex set and edge set of G, respectively.

An orientation of a graph G = (V, E) is a directed graph G = (V, E) which is obtained
by orienting the edges of G; that is, for each edge vw € E, exactly one of (v, w) and (w,v) is
in E and for every (v, w) € E, vw is an edge in E.

Definition 2.15 (Disjoint union of graphs). Let (G;);e; be a family of graphs, indexed by a
non-empty finite set I. The disjoint union ;e;G; of the graphs G; is a graph defined by
V(U:iGi) = {(v,i) |ve V(G;),i eI} and
E(U,,Gi) = {(v,i)(w, i) | vw € E(G;),i € I}.

In particular, we write GUH for the disjoint union of a pair of graphs G and H. |

2.8 Linear algebra

We review some basic linear algebra and introduce unordered matrices, whose rows and
columns are indexed by arbitrary unordered sets. For more background on matrix theory
and linear algebra see e.g. Horn and Johnson [42] and for further details on the study of
unordered matrices see Blass et al. [9].

2.8.1 Matrices and linear maps

Let R be a commutative ring. An m x n matrix over R is a rectangular array of scalars from
R, consisting of m rows and »n columns. We write m x n for the dimension of A. An m x n

for short when the dimension of A is clear from the context) to denote the matrix
an - din
A= : i
Am1  ° Amn
When R = F is a field, a matrix over F can alternatively be seen to represent a linear map

between two finite-dimensional vector spaces, given a basis for each vector space. To see
this, we first recall some basic definitions from elementary linear algebra. Let U be an n-

dimensional vector space over a field F and let B = {uy,...,u,} be an ordered basis for U,
where 1y < up < --- < u,. With respect to this basis, we can represent each element x of U
as an n-tuple [x]p = (a1,...,a,) € F", where x = aju; + --- + a,u, is the unique expression

of x in terms of the basis elements of B. The scalars a; are called the coordinates of x with
respect to the basis B and [x | is the unique B-coordinate representation of x. It is not hard
to see that the map U — F", x — [x]3 is an isomorphism of vector spaces.

Now consider an n-dimensional vector space U and an m-dimensional vector space V
over the same scalar field F. Let By = {uy, ..., u, | beabasis for Uandlet By = {vy,...,v;}
beabasisfor V.If T : U - V is alinear map then we construct an m x n matrix A as follows.
For each u; € By, let [T(u;)]p, = @iiv1 + - + amivy, and let A := (a;;) denote the matrix
obtained by gathering all the coefficients a;;. We call A the matrix representing T with respect
to bases By and By. It can be seen that for any x € U, [T(x)]p, = A([x]p, ). Observe that
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here the ordering of each basis is important. That is, changing the ordering of a given basis
amounts to permuting the rows and columns of the associated matrix representation.

By this discussion, every linear map can be represented by a matrix, given suitable bases
for both its domain and co-domain. Moreover, every matrix can be seen as a representation
of some linear map. More specifically, let A be an m x n matrix over a field F. Then A is the
matrix of the linear map T : F" — F™, defined for all x € F" by T(x) := Ax, where x is seen
as a column vector of length n over F. The image of A is the image {Ax | x € F"} ¢ F" of
the associated linear map and the null-space (or kernel) of Ais {x € F" | Ax = 0} ¢ F". The
rank of the matrix A is the dimension of its image and the nullity of A is the dimension of its
null-space. A fundamental result of elementary linear algebra is the relation

n = dimension of the image of A + dimension of the null-space of A,

often referred to as the rank-nullity theorem.

2.8.2 Matrices indexed by unordered sets

Rank and nullity are two examples of matrix properties that are in fact properties of the
underlying linear map that the matrix represents. The same holds for many common ma-
trix properties that we focus on in linear algebra; for example determinant and singularity.
It follows from the above discussion that such natural matrix properties are invariant under
permutation of the rows and columns of the matrix, since the associated linear map is invari-
ant under a permutation of the chosen vector space bases. With this in mind, it is natural
to consider a more general notion of a matrix, where the rows and columns are indexed by
arbitrary unordered sets.

Let R be a commutative ring and let I, ] be finite, non-empty sets. An I x ] matrix A over R
is a function A : I x J] - R. Here the rows of A are indexed by I and the columns of A are
indexed by J. We write A = (a;;) to denote that A(i, j) = a;jforalli e Iand je J. IfI =]
then A is called a square matrix. We write M,;(R) for the set of I x J matrices over R, and
let M;(R) := Mpx;(R). If Aisan I x | matrix then the dimension of A is |I|| x ||J|.

By taking I = [m] and ] = [n] we recover the more familiar notion of an m x n matrix A
from above; i.e. a rectangular array of elements consisting of m rows and n columns. Most
natural matrix properties from linear algebra apply directly to matrices indexed by arbitrary
sets as discussed above; in the following we review a few of the relevant ones, where we write
R to denote a commutative ring.

Matrix addition and multiplication. Addition and multiplication of unordered matrices
is defined in exactly the same way as for ordered matrices, except that we now have to ensure
that the index sets of the two matrices, and not just their dimension, are matching. That is,
if A and B are two I x J matrices then their sum A + B is the I x ] matrix defined forall i e I
and j € J by (A + B)(i, j) := A(i, j) + B(i, j). Similarly, if A is an I x K matrix and B is a
K x ] matrix, where all index sets are finite and non-empty, then the product of A and B is
the I x ] matrix AB defined for all i € I and j € J by (AB) (i, j) := Y rex A(i, k)B(k, j).
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Determinant and trace. Let I be a finite and non-empty set and consider an I x I square
matrix A over R. The determinant of A, written det(A), is given by

det(A):= 37 sgn(0) [Taio(s),

oeSym(I)

where the sum is taken over the symmetric group Sym(I) of all permutations of I. Here
sgn(o) denotes the sign of the permutation o, defined by sgn(o) := (1) where m is the
number of transpositions of pairs of elements that must be composed to build up the per-
mutation 0. Note that the determinant of a matrix over R is an element in R. This definition
agrees with the usual definition of the determinant of an n x n matrix. This is because if we
linearly order the index set I, then we obtain an ||I|| x |I|| matrix in the usual sense and the
determinant of this matrix is independent of the ordering, since by changing the ordering we
are effectively permuting the rows and columns in the same way, which preserves the value
of the determinant’.

The trace of an I x I matrix A = (a;;) over a commutative ring R, written tr(A), is defined
by tr(A) := Yy aii. That is, the trace of A is just the sum of the entries along the main
diagonal.

Rank and singularity over a field. Let F be a field and consider a finite set I. We write F!
for the space of all functions g : I — F. This can be given the structure of a vector space,
where addition of two vectors g and f in F! is the function x ~ g(x) + f(x) in F' and
multiplication of a vector g € F! by a scalar a € F is the function x ~ a - g(x) in F.. When
I is linearly ordered, this definition agrees with the standard notion of a Cartesian | I|-space
over F.

Now consider an I x J matrix A over F. The rank of A, written rank(A), is defined as
the dimension of the image {Ax | x € F/} ¢ F!, as a subspace of F. It can be seen that the
rank of an unordered matrix in this sense agrees with the usual definition of matrix rank,
since the rank of a matrix is invariant under permutation of its rows and columns. When
I = |J| = n, then we say that A is non-singular if rank A = n and singular otherwise. By
elementary linear algebra, it follows that A is non-singular if and only if there is a J x I matrix
B for which it holds that AB is the I x I identity matrix (equivalently, such that BA is the ] x J
identity matrix). Such a matrix is also said to be invertible and we write A™! to denote its
inverse. For the case when I = J, it can be seen that a square I x I matrix A over F is singular
if and only if det(A) = 0.

Consider again non-empty finite sets I and J of the same cardinality. Two square matrices
A€ M;(F) and B € Mj(F) are said to be similar if there exists a non-singular I x J matrix S

3 Alternatively, we could have considered a determinant function which applies to arbitrary I x J matrices
where ||I| = |J| = n (that is, I and ] are not necessearily the same set). This problem was considered briefly by
Blass, Gurevich and Shelah in [9]. However, it can be seen that when I # J then the determinant of an unordered
I x ] matrix only corresponds with the determinant of an ordered n x n matrix up to sign. This is because if
we linearly order the index sets I and J then the determinant of the corresponding # x n matrix depends on
the chosen orderings since we are effectively permuting the rows and columns independently. To see how this
affects the sign of the determinant, recall that for any n x » matrix M and n x n permutation matrices P and
Q, det(PMQ) = det(P) det(M) det(Q) = (~1)" det(M)(-1)/, where i, j > 0 are integers depending on P and
Q, respectively (see e.g. Horn and Johnson [42]). Clearly when Q = P! (that is, when we permute the rows
and columns in the same way), then det(PMP™") = det(M). Otherwise, however, det(PM Q) may differ in sign
from det(M).
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over F such that
B =S"AS.

The transformation A ~ S™'AS is called a similarity transformation by the similarity matrix
S.

Definition 2.16 (Bijection matrices). Let F be a field and let I and ] be finite sets with |I| =

| 7]l > 0. For a bijection 7 : I — J, write B, for the I x J bijection matrix over F, defined for
allieIand je]by

(1 ifr(i) =i,

Bali ) = { -

0 otherwise.

It can be easily verified that a bijection matrix B, is invertible, with its inverse explicitly
given by B! = B, 1. Multiplying a J x J matrix A on the left by an I x ] bijection matrix
B results in a relabeling of the rows of A according to m. That is, B;A is an I x J matrix
given by (B,A)(i, j) = A(n(i), j). Similarly, multiplying A on the right by B, results in a
relabeling of the columns of A according to 7z~!. By simultaneously applying the bijection 7
to the rows and columns of A, we obtain the I x I matrix B,AB;" given by (B,AB;')(i, k) =
A(n(i),n(k)), for all i, k € I. Finally, note that when I = J, then an I x I bijection matrix
agrees with the usual notion of a permutation matrix on I.

2.9 Logics and complexity classes

We conclude this chapter by reviewing some common concepts in both computational and
descriptive complexity theory. For further background on descriptive complexity see e.g.
Ebbinghaus and Flum [23] while Papadimitriou’s textbook [59] is an excellent reference on
computational complexity.

2.9.1 Computational complexity

We briefly recall the definition of some of the common complexity classes we will frequently
encounter in this thesis. We write PTIME to denote the set of languages decidable in de-
terministic polynomial time and write NP to denote the set of languages decidable in non-
deterministic polynomial time. We also consider space-bounded computation, where the
computational model is a Turing machine with a separate work tape. Since only the space
used on the work tape is counted towards the space usage during a computation, this model
allows us to consider sub-linear space complexity. In particular, we consider logspace compu-
tations, where the amount of space used is at most logarithmic in the input size. In this way,
we write L to denote the class of languages decided by a deterministic logspace machine and
write NL to denote the class of languages decided by a non-deterministic logspace machine.

2.9.2 Logics capturing complexity classes

Intuitively, a logic L captures a complexity class C on a class of finite structures /C if the L-
definable properties of structures in K are precisely those that are decidable in C. In order
to define this relation more formally, we need to establish some notation for encoding finite
relational structures as strings over X := {0,1}. Our presentation follows that of Libkin [52].
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Let 7 = (Ry,..., R, c1,...,¢;) be a vocabulary, where the R; are relation symbols and the
¢; are constants. Let A be a 7-structure of size n and consider a linear ordering < of U(A).
Write U(A) = {ay,...,a,} where the elements of U(A) are ordered a; < a; < -+ < a, by
<. A string encoding of A, with respect to the ordering <, can now be defined as follows.
For each k-ary relation symbol R € 7, consider an enumeration of all k-tuples of elements of
U(A), in the lexicographic ordering induced by <. That is, we enumerate k-tuples as

(a,..oa1),(at,...,a2)s ..y (Ans oy ane1)s (Any oo 5 an),s

and write d; for the j-th tuple in this enumeration. Then the relation R* is encoded by an
nk-bit string enc(RA, <) where the j-th bit of enc(R*, <) is 1 if and only if d; € R* and 0
otherwise.

Constants can be encoded similarly, by viewing each constant as a unary relation contain-
ing exactly one element. Putting this all together, we write enc(A, <) for the string encoding
of A with respect to < defined by

enc(A,<) = 0"1 - enc(R}, <)-—-enc(RA, <) -enc(c, <) - enc(c?, <),
where a - b denotes the concatenation of strings a and b.

Let K be a class of finite 7-structures. Overloading our notation, we write enc(KC) € 2 to
denote the language defined by

enc(KC) := {enc(A,<) | A e Land < alinear ordering of U(A)}.

We can now define the capturing relation between complexity classes and logics more for-
mally as follows.

Definition 2.17 (Logics capturing complexity classes). Let C be a complexity class, L a logic,
and /C a class of finite structures.

« We write L <x C if for every L-sentence ¢, there is a language A € C such that

enc(Mod(¢)) nenc(K) = Anenc(K).

In other words, L <ic C if for every L-sentence ¢, the problem of deciding if A = ¢,
given A € [C, belongs to C.

o We write C <x L if for every class Kp € K for which there is a language A € C with
Anenc(K) =enc(Kp), there is an L-sentence ¢p such that Mod(¢) n K = Kp.

In other words, C <x L if for every property P of structures from K which can be
decided with complexity C, there is an L-sentence ¢p for which it holds that for every
A € K, A E ¢p if and only A has the property P.

« Finally, we say that L captures C on IC, and write L = C,if C<g Land L £ C.
|

Note that when /C is the class of all finite structures, then we usually omit the subscript to the
above relations, and simply write L= C,C<Land L < C.



Chapter 3

Linear algebra in fixed-point logic
with counting

The results of Atserias, Bulatov and Dawar [4] show that the problem of deciding solvability
of systems of linear equations over a finite field is not definable in IFPC. Recall that by ele-
mentary linear algebra, a system of linear equations Ax = b over a field is solvable if and only
ifrank(A | b) = rank(A), where (A | b) is the matrix obtained from A by adding the column
vector b on the right. It then follows that IFPC is not expressive enough to define the rank of
a matrix over a finite field. However, this result does not directly imply the non-definability
of other important matrix properties. In particular, is IFPC expressive enough to define the
determinant of a matrix?

In this chapter we study the descriptive complexity of various problems in linear algebra.
This follows up on the work of Blass, Gurevich and Shelah [9], who considered the problem
of deciding if a matrix is singular. This problem lies in PTIME and it is shown that it can be
expressed in IFPC for both integer and finite field matrices. Recall that over a field, a matrix
A is singular if and only if its determinant det(A) is zero. Blass et al. [9] note that over the
two-element field GF,, the determinant can therefore be expressed in IFPC by testing for
singularity. In this chapter we generalise this result, by showing that over any finite field the
characteristic polynomial (and thereby, the determinant) of a matrix can be defined in IFPC.
The same result is obtained for matrices with integer and rational entries. Moreover, we show
that for matrices over the field of rationals, both the rank and the minimal polynomial can
also be defined in IFPC. This demonstrates that it is really the inability of IFPC to define
matrix rank over finite fields that separates the logic from PTIME.

We begin this chapter in §3.1by defining a representation of matrices over Z, Q and finite
fields as finite relational structures. In §3.2]we show that various structural properties of finite
fields, given explicitly by their addition and multiplication tables, can be defined in IFPC. In
particular, we show that a linear ordering can be defined over any finite field and that over
fields of non-prime cardinality, we can define a representation of the field elements in terms
of polynomials in a certain polynomial ring.

We shift our attention to integer- and rational-valued matrices in where we consider
the definability of various arithmetic operations on matrices. We show that the product AB
of matrices A and B, matrix powers A™, for m > 0, and the trace tr(A) can all be defined in
IFPC. The results of the previous sections are combined in §3.4]to show that the characteristic

29
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polynomial and the determinant of integer and rational matrices can be defined in IFPC. By
an appropriate translation of the underlying field, this implies that the characteristic polyno-
mial and the determinant of matrices over finite fields can also be defined. This extends the
results of Blass, Gurevich and Rossman [7]], who show that the characteristic polynomial can
be defined in the formalism of choiceless polynomial time with counting, which subsumes
IFPC.

Finally, focuses on matrices with elements from the field of rationals. For such ma-
trices, it is shown that both the rank and the minimal polynomial can be defined in IFPC.

3.1 Matrices as relational structures

We consider matrices whose rows and columns are indexed by arbitrary sets, not necessarily
ordered. Let R be a commutative ring with a multiplicative identity and let I, ] be finite, non-
empty sets. We consider an I x ] matrix A over R as a function A : I x | — R. Here the rows
of A are indexed by I and the columns of A are indexed by J. We write A = (a;;) to denote
that A(i, j) = a;;forall i € I and j € J. We write M, (R) for the set of I x J matrices over R,
and let M[(R) = MIXI(R)'

In the following we consider matrices over three kinds of domain: finite fields, the ring of
integers and the field of rationals.

3.1.1 Matrices over finite fields

Over a finite field F, we can represent a matrix A = (a;;) € My.;(F) as a finite, relational
structure. We consider two different representations.

« The field F is part of the vocabulary. We consider A as a two-sorted structure A over
the vocabulary 7z = {M; | f € F}, where M is a binary relation for each f € F.
The two sorts of A are the row sort I and the column sort J. The relations M 1 are
interpreted as

Mp ={(i,j) eIx ]| ai = f},
for each f € F.

o The field F is part of the structure. We consider A as a three-sorted structure A with
row sort I, column sort J and domain sort D. Here the last sort is interpreted as the
elements of the field F. Write 7geq := {+, X, O, 1¢} for the vocabulary of fields. Then
the vocabulary of A is Tgy,e := { M} U Tgeg, where (D, +fA, x?, 04, 1?) is the field F and
the ternary relation M is interpreted as

MA:{(i,j,d)elx]xD|aij=d}'

Hereafter, we will assume that all matrices over finite fields are given as finite Tfy,¢-structures
in this way. The benefit of this representation is that it allows us to consider fields that are
not fixed. Note that this is without any loss of generality, for it can be seen that for each finite
field F, there is a first-order interpretation I' of Ty, in 7f, such that for every 7p-structure
A, A and T(A) represent the same matrix.
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Remark. Both these representations could also be used to describe matrices over a finite ring
R. However, we do not consider finite rings on their own (that is, other than as a part of a
finite field) anywhere in this thesis, so this will not be studied further.

3.1.2 Integer and rational matrices

To represent unordered integer and rational matrices as finite structures, we follow the con-
vention of Blass et al. [9] and write matrix entries in binary notation. Let A = (a;;) € My.;(Z)
be an integer matrix and let m = max{abs(a;;) | i € I, j € J} be the maximum absolute
value of integers appearing in A. Let b = [log,(m)], B = [0, b] and write bit(x, k) to de-
note the k-th least-significant bit in the binary expansion of x € Z. Then we consider A as a
three-sorted structure A, with row sort I, column sort J and bit sort B, over the vocabulary
77, = {M, P,<p}. Here <g is interpreted as alinear ordering of B, P* = {(i, j) € Ix] | a;; > 0}
identifies the non-negative elements of A, and the ternary relation M is interpreted as

M = {(i,j,k) e Ix ] x B| bit(abs(a;;), k) =1}.

That is, (i, j, k) € M® when “the k-th bit in the binary expansion of abs(a;) is 1. Observe
that the role of < is only to order the set of bit positions B, which we commonly view as
an initial segment of the integers. In particular, the rows and columns of the matrix M* are
themselves unordered.

Matrices with rational entries can be treated similarly by handling numerators and de-
nominators of matrix elements separately. That is, we consider matrices over the vocabulary
Q= {M,, My, P,<p}, where Sg and PA are defined as before, and the ternary relations Mr‘l‘
and M4 define the numerators and denominators of elements in A, respectively.

3.2 Describing finite fields in [FPC

In our chosen representation of finite-field matrices, the underlying field is given explicitly
as a part of the matrix structure by its addition and multiplication tables. In [9], Blass et al.
consider a similar representation, where they assume that the field elements are linearly or-
dered. In this section we show that this assumption is not necessary in the current context,
as we can already define a linear ordering over any finite field in FOC+DTC < IFPC. Here,
FOC+DTC is the extension of FOC with operators for defining deterministic transitive clo-
sure. Moreover, we also show how to define in FOC+DTC or IFPC many important struc-
tural properties of finite fields. In particular, for a field F of cardinality p?, with d > 1and p
prime, we define in IFPC a representation of elements of F as polynomials of degree less than
d over Zj. This will play a crucial role in our construction of the characteristic polynomial
in §3.4

The remainder of this section is split into two parts. In we consider fields F of
prime cardinality p. Our main result is that an isomorphism F — Z, can be defined by a
fixed formula of FOC+DTC over any field F of prime cardinality p. This in turn gives a
way to canonically order the elements of F according to the natural ordering of the integers
{0,...,p — 1}, as claimed. For the case when F has cardinality pd, with d > 1, we show in
§3.2.2|that there is a formula of FOC+DTC that defines the set of all primitive elements of F,
which are the cyclic generators of the multiplicative group F*. It follows easily that for each
primitive element « € F, there is an FOC+DTC-definable linear ordering of F, dependent
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only on a. Since the number of primitive elements is generally greater than one, this of
course does not give us a canonical ordering of F, but rather a collection of linear orderings.
However, we generally only consider queries over ordered structures that are order-invariant,
so this makes no difference with respect to definability as we can take the conjunction over
the set of all orderings. Finally, we show that we can define the minimal polynomial of any
primitive element by a formula of IFPC. This allows us to represent the elements of F as
polynomials in a finite polynomial ring, as discussed above.

Remark. All the results here on definability in FOC+DTC could be stated directly in terms
of IFPC, which is after all the focus of this chapter. However, the reason for emphasising
FOC+DTC is that in Chapter[4]we will apply the results here also to extensions of first-order
logic with rank operators, which subsume FOC+DTC but not IFPC.

3.2.1 Prime fields

Let F be a finite field with p elements, where p is prime. In this section we show how to define
by a fixed formula of FOC+DTC an isomorphism F — Z,. Here the field Z, consists of the
integers {0, ..., p — 1}, with addition and multiplication carried out modulo p. Specifically,
we will prove the following lemma.

Lemma 3.1 (Isomorphism of prime fields). There is an FOC+DTC number term n(z) in
vocabulary T4, where z is an element variable, for which it holds that for any Tfeg-structure
F of prime cardinality p, the map

()" = {(fonlf17) | f < UE)}
is an isomorphism of fields F — Z,.

Proof. Given two prime fields F and K of the same cardinality p, we can explicitly construct
an isomorphism F — K as follows. Since the field F has characteristic p, each element can
be uniquely written in the form

k-1g=1g+¢--- +¢1p,
| —
k times
where 1¢ is the multiplicative identity of F and 0 < k < p — 1. Similarly, each element of G
can be written uniquely in the form k - 15, 0 < k < p — 1. It is easily verified that the map
¢:F— G, k-1t~ k-1 is an isomorphism of fields.

Now suppose we have a formula y(z, v) which relates an element variable z and a number
variable v whenever z = I¢- v, where 1¢ denotes the multiplicative constant symbol of 7gq. By
the above discussion, y(z, v) is necessarily the graph of an injective function. We can then
define the required number term 7(z) as follows:

1(2) = #, (30 Iu (u <v) Ay (2 0) Ay (w, ),

which counts the number of elements w that appear before z in the sequence of elements
0 112,163, .. ..

It remains to show that we can define the formula y(z, v) in FOC+DTC. Define a for-
mula 6(xy, vy, x2,v2) = (v2 = v1+1x) A (x2 = x1 +¢1f), where we write + (without subscript)
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for addition of integers over the number sort and write +¢ for addition of field elements over
the element sort. Viewed as a binary relation over pairs of elements of the type ‘(field element,
number)), 0 relates (xj, v;1) to (x2, v2) exactly when x; is the successor of x;, with respect to
the ordering of the field elements, and v, is the successor of v;, with respect to the ordering
of the integers. It follows that z = 1¢- y exactly when there is a path from (0, 0g) to (z, u)
in the graph defined by 6. It can be seen that this graph is deterministic, and the desired
formula is given by

V/(Z’ U) = [dtcxlﬂl,xzﬂzg](of’ 06, z, U)'
L]

Asadirect corollary of this lemma, we see that there is a formula of FOC+DTC which defines
a linear ordering over any prime field in vocabulary 74q.

Corollary 3.2 (Linear ordering over prime fields). There is an FOC+DTC-formula ¢(x, y)
in vocabulary 5,,,, where x and y are element variables, for which it holds that for any Tfeia-

structure F of prime cardinality, the binary relation ¢(x, y)¥ is a linear ordering of U(F). [

3.2.2 Prime-power fields

Let F be a finite field of cardinality p?, where p is prime and d > 1 an integer, and write
K := GF for the prime sub-field of F of cardinality p. The field F is commonly represented
as a quotient ring K[ X]/(g(X)) where g(X) is a monic irreducible polynomial of degree
d over K. This was explained in more detail in One way to define a polynomial of
this kind is to construct the minimal polynomial over K of some primitive element. Recall
from that a primitive element of F is any generator of the multiplicative group F*.
The minimal polynomial for a primitive element « € F over K is defined to be the least
monic polynomial f(X) € K[X] such that f(a) = 0. The polynomial f(X) is irreducible
over K[X], by definition, and has degree d, as required (see e.g. Lidl and Niederreiter [53}
Chapter 3]).

In this section we consider the definability of various properties of prime-power fields.
In particular, we show that there is a formula of IFPC that defines over any 7ge4-structure
F a monic irreducible polynomial of degree d over GF,, where |E| = p?. To do that, we
first show that the collection of primitive elements of F can be defined by a formula of
FOC+DTC. As a consequence of this construction, we obtain for each fixed primitive el-
ement &« an FOC+DTC-definable ordering of the field F. Finally, we show that for each
primitive element « there is an IFPC formula that defines its minimal polynomial over F.

The first step in our construction is to establish the following lemma, which shows that the
operation of raising field elements to an integer power (that is, repeated multiplication in the
field) can be defined in FOC+DTC.

Lemma 3.3 (Powering of field elements). Consider element variables x and y and a number
variable v. There is an FOC+DTC formula pow(x, v, y) in vocabulary Tﬁeld,for which it holds
that for any t4e4-structure F and any g, h € U(F) and m € Ny,

F* =pow[h,m,g] < h™:=h lef x; h=g.
| S —

m times
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The proof of this lemma is very similar to the proof of Lemma[3.]jabove but we give the details
for completeness.

Proof. Define a formula 0(z, p1, 22, pasx) = (pa = 1 + In) A (22 = 21 x¢ x), where we
write + (without subscript) for addition of integers over the number sort and write x¢ for
multiplication of field elements over the element sort. Here, x, z; and z; are element variables
and p and y, are number variables. Treating x as a parameter, we can view 6 as a binary
relation of type ‘(field element, number)’ which relates (z, p1) to (z2, y2) exactly when z; is
z; multiplied by x and y, is the successor of y;, with respect to the ordering of the integers.
It follows that y = x¥ := x x¢--- x¢ x (v times) exactly when either both y and v are zero (0
and Oy, respectively) or there is a path from (x,1y) to (¥, v) in the graph defined by 6 with
fixed parameter x. It can be seen that this graph is deterministic and the desired formula is
given by

pow(x,v,¥) = ((v=0N8) A (y=0¢)) v [dtc 2,4, 0](x, 1N, 2, V; ).
O

As a direct corollary of Lemma([3.3] we can see that the set of primitive elements of any finite
field can be defined in FOC+DTC, simply by checking for each field element « if every other
non-zero element can be expressed as a power of a. Clearly, this happens if and only if « is
primitive.

Corollary 3.4 (Primitive elements). There is an FOC+DTC formula prim(x) in vocabulary
Tﬁ o1q for which it holds that for any tfe4-structure F, prim(x)¥" is the collection of primitive
elements of F. O]

Let F be a finite field with multiplication written as x and multiplicative identity 1r. For a
primitive element « € F, we define the a-order of an element g € F* to be the integer m for
which a™ = a x --- x « = g. Here, a° is taken to be 15. Since the multiplicative group F* is
generated by «, the a-order is well-defined. The following corollary now follows immediately

from Lemma 3.3|and Corollary[3.4}

Corollary 3.5 («-order of field elements). Consider element variables x and y. There is an
FOC+DTC number term ord(x, y) in vocabulary Tﬁe,d, for which it holds that for any T4.4-

structure F, any primitive element o € U(F) and any g € U(F), ord[a, g]¥ = m is the a-order
of g in'F; that is,
F__F
am::axf...xf(x:g‘

~— —
m times

O]

For a fixed primitive element « € F, we can define a linear ordering <,, of F by setting g <, h
ifand only if the a-order of g is at most the a-order of h, forall g, h € F*, and setting O <o g
for all g € F. Applying Corollary 3.5} this relation can clearly be defined in FOC+DTC, as
stated in the following.
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Corollary 3.6 (Linear ordering over prime-power fields). There is an FOC+DTC-formula
o(x, y,z) in vocabulary T Where x, y and z are element variables, for which it holds that
for any tfeg-structure F and any primitive element o € U(F), the binary relation

9(x,y,a/2)" = {(g,h) € UF) |F" = p[g, h,a]}
is a linear ordering of U(F). O

It remains to show that the minimal polynomial of a primitive element can be defined in
IFPC. For that, we need to be able to encode polynomials over pairs (F, «), where F is a
Thelg-structure and o € U(F) a primitive element. Here we crucially rely on being able to
define a linear ordering <, of U(F) (with respect to «), as discussed above and described by
Corollary[3.6 To simplify our notation we will hereafter assume that the universe of a 74eiq-
structure F of cardinality m, given a primitive element & € U(F), consists of the integers
{0,1,...,m—1}, with <, interpreted as the standard ordering of the integers. This is without
any loss of generality, for we can always define a bijection ¢ : U(F) - {0,...,m —1} asa
number term in FOC by

i(x) =#,((y <a %) A (y % x)).

Now consider a number term 7(x) in vocabulary 754, where x is an element variable. Given
a Thed-structure F, a primitive element & € U(F) and an integer m, we write poly, (7, F, a, m)
to denote the integer polynomial @, X™ + --- + a;X + ag, where a; = n[i]¥" for each i < m
in U(F).

Lemma 3.7 (Minimal polynomials). There is an IFPC number term minpoly(x, y) in vocab-
ulary 44 for which it holds that for any Tga4-structure F and primitive element o € U(F), the
polynomial

poly, (minpoly(x, a/y),F, a,d) mod p

is the minimal polynomial of o over GF , where || = p and p is a prime.

Proof. Consider a finite field F of cardinality p?, p prime, and write K to denote the prime
field Z,. We first describe a general polynomial-time procedure for constructing the minimal
polynomial over K of a primitive element « € F. Then we show how this procedure can be
turned into a fixed-point formula over Tgeq-structures.

To define the minimal polynomial of a primitive element «, we first generate a list IT of
all polynomials in K[X] of degree at most d. There are exactly p®*! of those polynomials;
alternatively, we can reduce this number to p? by ignoring all polynomials of degree exactly
d that are not monic. Let <1y be the ordering on IT defined by

adXd+---+a1X+ao Spoly bdXd+-~~+b1X+b0
=>agag-1--a1ag <ex babg-1--bibo,
where azay ---ajagand byby_y---bibg are strings over {0, ..., p—1}* and <j¢y is the standard
lexicographic ordering on {0, ..., p — 1}*. To generate the list IT we enumerate the polyno-

mials in increasing <poly-order, starting with the constant polynomial g(X) = 1. Now we can
construct the minimal polynomial of & over K by

(1) building the set IT of polynomials in K[ X] of degree at most d;
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(2) defining the set IT,5, C IT of monic polynomials in IT that annihilate « — i.e. each
g € Iy, satisfies g(a) = 0; and

(3) finding the least element in I1,,, with respect to <1y, which will be the minimal poly-
nomial.

Constructing IT takes O(p*) steps, while the number of steps required for constructing oy,
is | IT| times the number of steps to decide for each g € IT if « is a root. Evaluating g(«) = 0
requires O(d?) multiplications and O(d) additions of elements from K. Finally, finding the
least element of ITay, requires a linear number of <p,ly-comparisons, each of which takes
O(d) steps. The overall algorithm takes O(pd?) steps, which is polynomial in ||F|| = p.

Let MiN-PoryNoMmIAL (F, i, &, k) be the problem of deciding whether the coefficient of X’ in
the minimal polynomial f(X) over K of a primitive element « is k, where i and k are integers
and the field F is given explicitly by its multiplication and addition tables. This problem is in
PTIME by our discussion above. We can define a linear ordering of structures of vocabulary
Tfield> given a fixed primitive element, so by the Immerman-Vardi Theorem there is a formula
mincoeff(x, y,z) of IFP for which it holds that for any 7ge4-structure F and i, a, k € U(F),
with « a primitive element,

(F, i, k) = mincoeff(x, y, z) if, and only if, the coefficient of X’ in the mini-
mal polynomial f(X) of « over K is k.

Here we are assuming that U(F) consists of the integers {0,..., p? — 1}, as noted earlier.
Finally, the required IFPC-formula minpoly(x, y) is given by

minpoly(x, y) = #,(3z (mincoeff(x, y,z) A (w < 2) A (w # 2))).
O

Let F be a finite field of cardinality p? with a primitive element a € F. Write f(X) for the
minimal polynomial of & over K = Zj,. Then an isomorphism : : F = K[X]/(f(X)) can be
explicitly given by

g~ h(X) = h(a) =g,

for all g € F. This is well-defined, since every element of F can be written uniquely as a linear
combination over K of elements in {1, «, o, cxd_l}. For instance, if ¢ € F has a-order
m, then g can be written as a™ mod f(«) in this way. This expression has to be unique,
since f(X) is a minimal polynomial. By putting this together with Lemma[3.7, we obtain the
following theorem, which says that the isomorphism : can be defined in IFPC. This theorem
will be crucial for our construction of characteristic polynomial of finite-field matrices in

B.4

Corollary 3.8 (Isomorphism of prime-power fields). There is an IFPC number term n(x, y)
in vocabulary 5,,,, where x and y are element variables, for which it holds that for any Tfei4-

structure F of cardinality p® and any primitive element a € U(F), the map defined for all
g € U(F) by
g = poly, (n(x, ¢/2), F, &, d) mod p,
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is an isomorphism of fields F = (Z,)[ X]/(f (X)), where we write

f(X) := poly, (minpoly(x, a/y),F, a,d) mod p.

3.3 Describing integer and rational matrices in IFPC

In [9], Blass et al. showed that standard arithmetic operations on matrices, such as multi-
plication and exponentiation, can be defined in IFPC for matrices over finite fields. In this
chapter, we establish similar results for integer and rational matrices. These will be crucial
later on for our construction of characteristic and minimal polynomials in and

In order to describe our results, we first establish in some notation for specifying
matrices by terms and formulae. In this notation, we can describe one matrix in terms of
others by a substitution of formulae. In we establish further notation, this time for
working with integers in binary representation. Furthermore, we prove some basic technical
results, showing that arithmetic over unordered collections of binary numbers can be ex-
pressed in IFPC. Using these results, we show in §3.3.3/how to define in IFPC the product
AB, when A and B are matrices of the appropriate dimension over Z or Q. Finally, we show
in §3.3.4]that for any square matrix A over Z or Q and any integer m > 0, the matrix A” and
the trace tr(A) are definable in IFPC.

3.3.1 Specifying matrices over Z and QQ by formulae

When describing matrices in the two-sorted logic IFPC, it can simplify our notation to have
a standard specification given by formulae and number terms. In the following we define a
specification of this kind, which will be used to describe arithmetic operations on matrices
later on.

Let X and y be tuples of element variables and let v be a number variable. Consider a number
term ¢ and formulae ¢4, ¢, and y in vocabulary 7 where free(t) = @ and all the free variables
of ¢, 94 and v are amongst the variables in X U y U {v}. Here the role of v is to index the
binary expansion of matrix elements over the number sort, bounded by the number term ¢.
Consider a 7-structure A and tuples d € U(A)¥l and b € U(A) VI Let

T, (A, d,b):={i<t* |A* k£ ¢,[d,b,i]} and
T;(A,d,b):={i<t* |A" e @4[d,b,i]}

denote the collections of integer assignments to v that satisfy ¢, (d/x, b/y,v)and ¢4(d/%, b7, v)
in A*, respectively. Define integers

Nabp = > 2,
ieT, (A,d,b)
dﬂ; = Z 2!, and
ieTy(A,d,b)
1 ifA* = y[a,b]
S =
ab -1 otherwise.
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Ifd_; # 0 for all @ and b, then we write mats 5, (@n, @4 ¥> £, A) to denote the U(A)IFI x

U(A)I7! rational matrix M = (m_;) whose entry at row index 4 and column index b is
given by
-
ab

M=z =22,
ab ab
d[i

S

Here the formulae ¢, and ¢, encode the numerators and denominators of elements of M,
respectively, and v identifies the set of non-negative elements of M. In other words, the
tuple (¢, (%, ¥,v), 94(%, ¥,v),¥(X, y),t) describes an interpretation of 7g in 7 of width
max{||x||, | ] }, where we omit the trivial domain-defining and equality-defining formulae
0 and ¢, respectively, and the linear ordering of bit positions is just the natural ordering over
the number sort (see for more details). Here the role of the integer A" e Ny is to
denote the maximum bit length of all the matrix elements, so that

Vo> £ =(3xy (¢n(X, 5, 0) V 9a(X, 7, 0))).

Integer matrices can be described similarly, by setting all denominators to one. In this way,
for a triple (¢(X,y,v),¥(X,y),t) we write maty 5 ,(¢,y,t, A) to denote the Uu(A)IFl x
U(A) 7l integer matrix, defined like above by setting d; = 1for all row indices d and column
indices b.

3.3.2 Binary arithmetic

Let 7 be a vocabulary and consider a formula 7(v) and a number term ¢ in IFPC[ 7], where
v is a number variable. Given a 7-structure A, we write

(n(v), )2 :={i]0<i<tA AA" Eg[i]}.

That is, the pair (7(v), t) defines over A the tA” -bit binary encoding of an integer m, where
M= Yie(n,0)A 2!, We write binenc, (7, t, A) € N to denote the integer defined in this way by
(n(v), t) over A.

Let y(X, v) be an IFPC[ 7]-formula, where X are element variables and v is a number vari-
able, and let t be an IFPC[7]-number term. The pair (y(X, v), t) defines over A a collection
of |U(A) |I*Il integers

binsety , (y, t, A) := {(binenc, (y(d/%,v), t,A) | d € UA)F} c Ny,

where y(d/x,v) is obtained from y(X, v) by replacing every occurrence of ¥ with 4. The
following lemma shows that there is a formula of IFPC which defines over any structure A
the number which is the sum of all elements in the collection binsety ,(y, ¢, A).

Lemma 3.9 (Sums of binary numbers). Let y(X, v) be an IFPC[1]-formula, where X are ele-
ment variables and v is a number variable, and let t be an IFPC[1]-number term. There is an
IFPC-formula sum(v) and a numeric IFPC-term s, such that for all T-structures A,

binenc, (sum,s,A) = > m.
mebinsety , (y,,A)

Remark. In the statement of this lemma, the number term s gives an upper bound for the
number of bits in ¥ ,epinset, , (y,1,4) -
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Proof. We consider a simple ripple-carry algorithm for simultaneously adding together a
collection of integers in binary. Let bit : Ny x Ny — {0,1} be the function that maps (i, m)
to the i-th bit of m, for i, m € Ny. Let bitcount : Ny x pg,(Ng) = Ny be the function

bitcount : (i, M) — [{m € M | bit(i,m) =1}|,

and let quot : Ny - Nj be the function k — | k/2|. Define carry : Ny x pg,(No) - Ny by
induction for all M cg, Ny as
carry(0, M) = quot(bitcount(0, M)),

carry(i +1, M) = quot(bitcount(i + 1, M) + carry(i, M)) Vi>1
In other words, carry(i, M) is the number of bits carried over from bit position i to bit
position i + 1 when adding together all the elements in M. Now we can define sumbit :
No x pan(Ng) = Ny, where sumbit(i, M) denotes the i-th bit in the binary expansion of
> mem M, as follows.

sumbit(0, M) = bitcount(0, M) (mod 2),

sumbit(i + 1, M) = (bitcount(i + 1, M) + carry(i, M)) (mod 2) Vi>1

Let y(%, v) be an IFPC|[ 7]-formula, where X is a k-tuple of element variables, and let ¢ be a

number term of IFPC[7]. It is straightforward to turn the above algorithm into a formula,
using the ifp-operator. Define

Pbits (V) = #z9(X,v),
(Podd(K) = #v(3M <K2pu+1= K) and
(Pquot(K) ‘M) = (2K = ‘M) Vv (2K +1= l/[)

Here, ¢y;is(v) denotes the number of “1” bits at position v over all X in y(X,v); the term
@odd(x) is one if k¥ denotes an odd number and zero otherwise; and @ quot(, ¢#) is a formula
that says that « is the integer quotient of y divided by two. Now let R be a binary relation
symbol of type {number, number} and define the formulae

01(1, %, R) E((l =0) A @quot (%, <Pbits(l)))V
(3p-R(1 =1, ) A Pquot (K> Prics (1) + y)) and
§01(U, }1) El:ipr,mel(l’ K,R)](U, 17)

If A is a 7-structure, then ¢;(v,#7)* defines the graph of the function carry(i, M), where
M = binsety ,(y,t,A)). Let

tcarry(v) = ##(371.(/)1(1), 77) N (# < 77))

be the corresponding number term; that is, for all 7, tcarry(v)(A’i) = carry(i, M), with M as
above. Define

Osum (1,76, R) =((1 = 0) A (k= poda(9wirs(1))) )V
(@odd(@bits(1) + tearry(1 = 1,%7)))) and
Psum (v, k) E[ifPR,mesum(‘»K>R)](U’ n).
Finally, define sum(v) = #,(37.¢sum (v, 17) A (4 < 17)), as required.
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All that remains is to show that we can construct a number term s for which it holds that
for any 7-structure A, s* is an upper bound for the the number of bits in the sum over all
elements in binset; ,(y, t, A). Consider a 7-structure A of size | A| = n. Each element in the
collection binsetz ,(y, ¢, A) has at most m = tA bits, so the number of bits in the sum over
all elements in binset; ,(y, t, A) is at most

log(2™n*) = m + klog(n) < m + kn.

Therefore, it can be seen that to get an upper bound for the number of bits in this sum for
any 7-structure, it suffices to take the number term

s=t+k-(#:(x=x)).

Here we write “k - (#,(x = x))” to denote the number term obtained by adding together k
terms #, (x = x), where the constant k is the number of distinct variables in X.
O

3.3.3 Product of matrices

Let (m1(v), ©1) and (#2(v), t,) be IFPC-definable specifications of binary numbers over sig-
nature 7. It is not hard to verify that there is an IFPC[ 7]-formula prod(v) and an IFPC[7]-
number term ¢ = #; + £, such that for all 7-structures A,

binenc, (prod, t, A) = binenc, (71, 1, A) - binenc, (72, t2, A).

This of course follows directly from the Immerman-Vardi theorem, as the bit positions are
linearly ordered over Nj. In fact, the product can even be expressed by an FOC-formula,
by defining a lexicographic ordering of bit strings in FOC and applying Lemma 6.14 from
Libkin [52]. From this observation, and the results of the previous section, we can now prove
the following theorem.

Theorem 3.10 (Product of integer matrices). Let

0, = (<p1(5é,2, U)>w1(£72)> i’l) and
0; = (92(2, 5, v), ¥2(2, ) t2)

be IFPC-definable specifications of integer matrices over T-structures. Then there is an IFPC-
definable matrix specification

®>< (®1) ®2) = ((Px (56) )7) U)) Il/X (55) y)) t)( )a
such that for all T-structures A,
mat)?,f/,v(q)xa l//X) t><> A) = matf,z,v((pl) vjl’ tb A) ° matf,f,u(gDZ’ 1//2’ t2> A)

Proof. By our previous observation, there is a formula-term pair (prod(X, ¥, Z, v), t) in IFPC
(here with additional parameters) which describes the product of (¢1(X, Z, v), t;) and (¢2(X, Z, v), t2),
with respect to v. The formula

wProd(iyy’Z) = (1//1(92) 2) <~ 1//2(2>)7))
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denotes the sign of the integer prod(X, ¥,z, v). Now define formulae

s V) = Vprod (%, §, Z) A prod(X, y,Z, v) and

,V) = “Wprod (X, ¥, Z) A prod(%, ¥, Z, v),

yZO()_C’a )_};
)’<0(5C., )7;

N WY

which respectively denote the collection of nonnegative elements and the collection of neg-
ative elements prod(X, y, z, v). Here each collection of integers is indexed by z, with X and
y treated as parameters. By Lemma [3.9} there are formula-term pairs (sumo (X, y, v), s30)
and (sum (X, ¥, v), s<o) that denote the sum over y»((%, y, Z, v) and y<o(X, ¥, Z, v), respec-
tively, with respect to z.

Now we can define formulae ¢ (X, y, v) and y« (%, y) which for all %, y denote the abso-
lute value and sign, respectively, of the integer obtained by subtracting sum.o (X, , v) from
sumso (%, ¥, v). Finally, let t, be the number term that defines the maximum of s5¢ and s«.

O

Using the above result, it is straightforward to define the product of rational matrices in IFPC.
Suppose A; € M,,4(Q) and A; € My, (Q) are rational matrices whose product we want.
We can rewrite each matrix as A; = N IB;, where for i € {1,2}, B; is an integer matrix of
the same dimension as A; and N; is the least common multiple of all integers appearing as
denominators of elements in A;. The product A;A; = (NlNz)’lBlBZ can now be obtained
by separately calculating the product of two positive integers and the product of two integer
matrices.

Corollary 3.11 (Product of rational matrices). Let

®1 = (?1,11(55,2) 'U), (Pl,d(f) 2) U)) 1//1(55’2)) tl) and
02 = (92,1(2, > v), 92,4(2, 3, v), ¥2(2, ), t2)

be IFPC-definable specifications of rational matrices over t-structures. Then there is an IFPC-
definable matrix specification

®X(®l) ®2) = ((PX,H(92> )7) U)) (Px,d(i» )7) U)) I//X (55) )_;)’ tx);

such that for all T-structures A,

matf,y,v((PX,n) Px.d> ll/xa (9 A)
= mat)?,f,v((Pl,n) P1,d> lVl) tl) A) : matf,j/',v((PZ,n) $2.d> 1!/2: t2) A)

Proof. For each i = 1,2, we can order the collection of denominators ¢; 4(x,Zz,v) using a
lexicographic ordering of binary numbers like the one we defined before. While this is not
a linear ordering, as some of the denominators may be repeated, we can define over the
number sort the corresponding collection of s; distinct denominators, in strictly increasing
order. Here s; is a number term we can define in terms of ¢; ;(X, Z, v) and the lexicographic
ordering. Let y; (¢, v) define this collection of distinct denominators, where y < s; and v < ¢
are number variables.

Because it is linearly ordered, we can now express any polynomial-time computation
over the collection of numbers defined by (y;(p, v), s;) as an IFP formula. In particular, we
can define the least common multiple of all numbers in the collection as a formula 6;(v),
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where v < r; and r; = s;t; is an upper bound on the number of bits required. It is now
straightforward to define formulae ¢(%, Z, v) and ¢,(Z, y, v) so that for all 7-structures A,

maty z , (@11, 91,4 V1, 11, A) = (binenc, (0, rl,A))_1 -maty z , (@1, ¥1, t + 11, A) and
mats z , (@21, 92.4> Y2, t2, A) = (binenc, (6, r2, A))f1 -matz z , (@2, Y2, t2 + 72, A).

The proof now follows from Theorem and our previous observation. O]

3.3.4 Exponentiation and trace of matrices

We can now define formulae that express the exponentiation of any definable matrix by an
element of the number sort. Let ® = (¢(X, y,v), ¥(X, y), t) be a matrix specification in vo-
cabulary 7 and let x be a number variable. A matrix A™, m > 2, is defined only when A is
square, so we assume |X|| = ||¥|| = k. Assume furthermore that all matrix entries are pos-
itive, that is y(%, y) = T. This is only to simplify the current presentation; matrices with
negative entries can be handled similarly. Let R be a relation symbol of type (element,
element®, number, number) and let ®¢ = (R(X, ¥, v;x), ¥(%,Z),s) be a matrix represen-
tation, where s = xt is a number term. Here, the number variable « is treated as a parameter.
Let ©4(0,0r) = (¢« (%, ¥, v;k), ¥ (X, ¥), tx) denote the product of ® and Oy, as in The-
orem[3.10] Then the exponentiation of the matrix ® by the number term « is defined by

power (%, 7 0 k) =[P 50 ((x = 0) A (% = 7))V
Ju <k =p+1)Aeu(X, ¥, 05u)](X, ¥, v3%),

where we write ¥ = y to denote A;(x; = y;). This construction resembles the one given
by Dawar in [16], except there the formula power is constructed using the least-fixed-point
operator, as opposed to ifp here. Now for every 7-structure A and any interpretation m € Ny
of the number variable «,

maty 5., (power, ¥, s, (A, m)) = matz 5, (9, ¥, t, A)™.

We can define the exponentiation of rational matrices very similarly.

Finally, we observe that we can define in IFPC the trace of integer and rational matrices.
Recall that the trace of a square matrix A = (a;;) is defined as tr(A) := }°; a;;. The trace of
an integer matrix, denoted by a tuple (¢ (%, y,v), v(Z, ), t), with | x| = | %], is just the sum
of all the binary numbers along the main diagonal, which can be defined in IFPC according
to Lemma Similarly, the trace of a rational matrix can be defined by first expressing
the matrix as the product of a rational number and an integer matrix, as we have discussed
before.

3.4 Characteristic polynomial over Z, Q and finite fields

It has been observed by Rossman that Csanky’s algorithm [14] for computing the character-
istic polynomial (and thereby, the determinant) of a matrix over any commutative ring of
characteristic zero is expressible in the logic of choiceless polynomial time with counting.
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Blass and Gurevich [7] used this observation to show that the same logic can also express the
determinant of any definable matrix over a finite field.

In this section we strengthen this result by showing that Le Verrier’s method for find-
ing the coeflicients of the characteristic polynomial of a matrix, which is the main building
block of Csanky’s algorithm, can already be expressed in IFPC for both integer and rational
matrices, as well as matrices over finite fields. We start by reviewing Le Verrier’s method; for
more details, see e.g. Faddeev and Faddeeva [25].

3.4.1 Overview of Le Verrier’s method

Let M be an n x n matrix over a commutative ring R of characteristic zero, n > 1. The
characteristic polynomial yp(x) of M is

det(xI — M) = x" — pix" ™+ pox" 2 =+ (-1)"p,,
=[1(x- 1),
i=1

where A}, A5, ..., A, are the eigenvalues of M, counted with multiplicities. The coeflicients
P1>--.» Pn € R of the characteristic polynomial can be written in terms of the eigenvalues as
follows:

k
Pk = Z H Aij >
1<ij<<ig<n j=1

for k € [n]. That is, the k-th coefficient pj is the sum of all products of k distinct elements
from {\,...,A,}. In particular, p, = det(M) and p; = X7, A; = tr(M), the trace of M.

We now derive a linear recurrence for the coeflicients py. This recurrence can be solved to
obtain the coefficients of yjs(x) without actually knowing any of the eigenvalues. Let m > 1
and define s, := tr(M™), which can be written as

n
sm=tr(M™) =Y AT,
i=1

using the fact that M™ has eigenvalues A{",..., A}’ (see e.g. Horn and Johnson [42]). Also
define for k, m > 1,

k
= 2 (JTapn™

I<ii<<ig<n  j=1

1g{in,enin )
Multiply together py and s,, and simplify to obtain

k n
pen=( Z, T 0) e

Using this equation, we write down a telescoping series

PkSo — Pk—1S1+ - F P1Sk_1 + £S5k

= (fl? +f11—1) - (fll—l +fk2—2) +"'ifok
=f = (n-k)pk

= (so = k) px-
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This gives us a linear recurrence for the coefficient pj in terms of the coefficients py, ..., pr_:

1
Pk = 3 (Pk-151 = Pr—aSa + -+ £ 5k).

Treating each s; as a scalar coefficient and each pj as a variable, we can write this linear
recurrence as a system of linear equations

Ax = b, (*)

where x = (pp,...,p1),s b= (£, %2, ., 5)" and

n

1= a2 g

0 1 . F 5;:; + S’jj
A= : :

0 O 1 —_

0 O 0 1

Le Verrier’s method for finding the coefficients of y(x) now consists of the following steps:
(I) for each k, compute s from the trace of the k-th power of M;
(2) construct the matrices A and b; and

(3) solve for the p.

3.4.2 Characteristic polynomial over Z and Q

Here we consider the characteristic polynomial of matrices with rational entries; by setting
all denominators to 1, we can use the same approach to define the characteristic polynomial
of integer matrices. Below we sketch a proof of the following theorem.

Theorem 3.12 (Characteristic polynomial over Q). There are IFPC-formulae 0%,  (u,v) and
th (> V) in vocabulary T@, where y and v are number variables, which for all square Tq-

matrices M satisfy:

« Mk 0" [k, i]iffthe i-th bit of the numerator of the coefficient of x* in the characteristic

char

polynomial ym(x) of M over Q is 1; and

« ME 0% [k, i]iff the i-th bit of the denominator of the coefficient of x* in the charac-

char

teristic polynomial ym(x) of M over Q is 1.
Recall that for any n x n matrix M, the constant term of y»(x) takes value (-1)" - det(M).

Corollary 3.13 (Determinant over Q). There are IFPC-formulae 07,,(v) and ngt(v) in vo-
cabulary 1(), where v is a number variable, which for all square Tg-matrices M satisfy:

« Mk 07,,[i] iff the i-th bit of the numerator of the determinant of M over Q is 1; and

« ME ngt[i] iff the i-th bit of the denominator of the determinant of M over Q is 1.
O
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To prove Theorem[3.12} it is enough to show that we can describe the linear system (x]) in IFPC
over any square 7g-structure M. As outlined in we can express in IFPC (a) the product
of two matrices; (b) a matrix raised to the power k, where k can be expressed as a number
term; and (c) the trace of a matrix. From this, it should be clear that we can define the linear
system Ax = b from equation (*) in IFPC over M. By the Immerman-Vardi theorem, we
can express any polynomial-time property of this linear system, because the matrices A and
b are defined on a linearly ordered subset of the number sort. In particular, we can express
Gaussian elimination as a fixed-point formula, use that to solve the system for x and hence
obtain the coefficients of yu(x). Theorem[3.12]now follows.

3.4.3 Characteristic polynomial over finite fields

Le Verrier’s method involves division by integers up to the size of the matrix, so it cannot
be applied directly over finite fields F of positive characteristic. Instead, we first map the
input matrix to a ring of characteristic zero, apply Le Verrier’s method, and then reduce the
result back to get the specification of the characteristic polynomial over F. This approach
was suggested by Blass and Gurevich in [7]. We consider separately two cases, one when F
is a prime field and the other when F is a prime-power field.

Primefields. Let M be a square Tgy,-matrix over a finite field F, where Fis a 744-structure
with p elements. By Lemma 3.1} there is an IFPC-definable isomorphism : : F — Z,. Hence,
we can assume without loss of generality that the elements of M are integers in the range
[0, p—1]. To express the characteristic polynomial of M over F, we (a) first map M to a matrix
M over the ring of integers, (b) apply Le Verrier’s method to M* over Z, and then (c) reduce
the result modulo p to get the specification of the characteristic polynomial over F, with
integer coefficients in the range [0, p —1]. The binary expansion of each element of M can be
described in FOC, thereby defining the matrix M* (see e.g. Libkin [52, Theorem 6.12]). Here
we use the fact that FOC has addition and multiplication over the number sort. Likewise,
the binary representations 67 (¢, v) and 63,,(v) from Theorem and Corollary
respectively, can be reduced modulo p to an integer in [0, p —1] with a formula of IFPC. Here
we use the fact that the bit positions are ordered and so we can express any polynomial-time
computation in fixed-point logic.

Prime-power fields. Let M be a square T¢,,,.-matrix over a finite field F, where F is a Tge1q-
structure with g = p? elements, where p is prime and d > 1. Consider a primitive element
a € U(F). By Lemma 3.7} there is a formula of IFPC that defines over (F, «) the minimal
polynomial f(X) of & over GF,[X]. As discussed in this polynomial is monic and
irreducible of degree d over GF,[ X]. To describe the characteristic polynomial of M over F,
we follow these steps. First, we define a polynomial g(X) over Z whose reduction modulo p
is f(X). This can be done trivially, for the coefficients of f(X) are already given by integers
in the range [0, p — 1], according to Lemma Next we lift the matrix M to a matrix M*
over the commutative ring R = Z[X]/(g(X)), according to the IFPC-definable isomorphism
given by Corollary[3.8] Finally, we apply Le Verrier’s method over R to the matrix M* and
then reduce the output modulo p to get the correct result. This last reduction is sound as we
have F = R/(pZ).

Addition and multiplication of elements in R is carried out coefficient-by-coefficient,
and can be expressed by formulae of IFPC. This follows from the Immerman-Vardi theorem
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since the polynomial coefficients are linearly ordered. The same argument shows that we can
define reduction of polynomials modulo f(X) with a fixed-point formula. Multiplication of
matrices over R can be defined in IFPC, by an argument similar to the one given in the proof
of Theorem It should now be clear the we can describe the characteristic polynomial
over R. Reducing the result modulo p in the end is straightforward, as before.

Finally, note that we are here using a linear ordering which depends on the choice of
primitive element a. However, as the outcome of each step that we describe above does not
rely on the actual ordering of the field elements, it can be seen that the overall query is order-
invariant. Therefore, the result stated below is obtained by quantifying over all primitive
elements of F, which are definable in FOC+DTC by Corollary[3.4}

Putting all the above together we get the following theorem, which says that the characteristic
polynomial, and hence the determinant, can be defined in IFPC over any finite-field matrix.

Theorem 3.14 (Characteristic polynomial over finite fields). There are IFPC-formulae 0 zo(2)
and 6 g (z, v) in vocabulary Tjﬁm . Where z is an element variable and v is a number variable,
which for any square Tfyq-matrices M over a finite field F satisfy:

o M* E 04,[d] iff the determinant of M over F is d € U(F);
o M* & O4,[d, k] iff the coefficient of x* in the characteristic polynomial yy(x) of M
over Fis d € U(F).
O

3.5 Rank and minimal polynomial over the rationals

We conclude this chapter by studying properties of matrices over the field of rationals. Our
main result is that both the rank and the minimal polynomial of rational matrices can be
defined in IFPC. These results both rely on properties of certain inner products over Q (and
more generally over C and R) which do not hold over fields of positive characteristic, as we
will explain in further detail below.

3.5.1 Rankover Q

Let A be a matrix over Q, not necessarily square, and write A* := A'A. The matrix A* is
square and symmetric, for (A*)' = (A'A)" = A'A = A*. For the following lemma, we use the
fact that for any n > 1, the dot product (-,-) : Q" x Q" — Q defined by (x, y) := x'y is an
inner product on the vector space Q". In particular, (x, x) = 0 if and only if x = 0.

Lemma 3.15. For any matrix A over Q it holds that rank A = rank A* = rank (A*A™*).

Proof. Let A be an m x n matrix over Q. Recall that the kernel of A is the subspace of Q"
which consists of all vectors that are annihilated by A; that is,

ker(A) :={x € Q" | Ax = 0}.

Furthermore, we know that rank(A) = n — dimker(A), by the rank-nullity theorem (see
§2.8|for further details). We claim that ker A = ker(A'A), which then implies that rank(A) =
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rank(A*). To prove this claim, first observe that ker(A) ¢ ker(A'A), for if Ax = 0 then
A'Ax = A'(Ax) = 0 too. For the other inclusion, consider x € Q". Then

x eker(A'A) & A'Ax =0
= x'A'Ax =0
= (Ax)'(Ax) =0
= (Ax) =0,

which shows that ker(A'A) < ker(A). Similarly, it can be shown that ker A* = ker (A*A*),
using the fact that A* is symmetric. The lemma now follows. O

With this in mind, the following lemma (see e.g. Kozen [50, Lemma 32.1]) tells us that the
rank of a rational matrix A can be inferred directly from its characteristic polynomial.

Lemma 3.16. Let A be an nx n matrix over any field. If rank A = rank A%, thenrank A = n—k
where x* is the highest power of x that divides the characteristic polynomial ya(x). O]

Now consider an m x n matrix A over Q. The above results show that the rank of A can be
computed in the following steps:

(I) compute the matrix A* = A'A;
(2) calculate the characteristic polynomial p4+(x) of A*; and

(3) find x, the highest power of the x that divides pa+ (x). Then the rank of A is n — d,
where A* has dimension n x n.

As all the computation steps outlined above can be described in IFPC, we get the following
result.

Corollary 3.17 (Rank over the rationals). There is a numeric IFPC-term 0,,,x of vocabulary
T which for all finite T-structures A satisfies: 0A" . = r iff the rank of A over Q is r. O]

Finally, remark that the statement of Lemma[3.16|holds more generally for matrices over R or
C if we take A* := A'A, where A’ is the transpose of A with every entry replaced its complex
conjugate. However, the statement does not hold over finite fields. For instance, over GF,
the p x p all-ones matrix J, has rank one, but ];, Jp» = 0 has rank zero. Essentially, the problem
here is that the vector space map (x, y) — x'y is not an inner product when the underlying
field has positive characteristic (the condition “x'x = 0 iff x = 0” is violated).

3.5.2 Minimal polynomial over Q

The minimal polynomial of a square matrix A is the monic polynomial m4(x) of smallest
degree m such that

ma(A) =A™ + ap A"+ k@A +agl = 0.

The minimal polynomial divides any polynomial q(x) with g(A) = 0. In particular, it di-
vides the characteristic polynomial y4(x) (see e.g. Horn and Johnson [42]). Hoang and
Thierauf [41] give a polynomial-time algorithm for computing the coefficients of the mini-
mal polynomial, which crucially does not require a computation of the eigenvalues of A. In
this section we briefly review this algorithm, and show that it can be expressed in IFPC.
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Let A be an J x ] matrix over Q, where ] is a finite set of cardinality #n > 0. Then by definition
of the minimal polynomial it follows that A has a minimal polynomial of degree m if and
only if

(I) there is a monic polynomial p(x) of degree m for which it holds that p(A) = 0; and
(2) for every monic polynomial g(x) of degree k < m, g(A) # 0.

For an r x s matrix B, we write vec(B) to denote the column vector of length r - s obtained by
stacking the columns of B one below the other. Fori =1,...,n,letv; = Vec(Ai). Then it can
be seen that condition (I) from above is equivalent to saying that there exist xo, ..., xp-1 € Q
such that

Vin + Xm-1Vm—1 + -+ + XV = 0, (1)

which states that the vectors {vo, ..., V,, } should be linearly dependent over Q. Similarly,
condition (2) that all monic polynomials gq(x) of degree k < m should have g(A) # 0, is
equivalent to saying that for all k < m and all xy, ..., x4_; € Q it holds that

Vi + X Vi_1 + -+ XV £ 0, ()

which states that the vectors {vy, ..., vy} should be linearly independent over Q. Hence,
we see that the set of coefficients a = (ay, ..., dy-1) of the minimal polynomial m4(x) is a
solution to equation , in unknowns xq, . . . , X,,—1, for the least m for which it has a solution.
Indeed, for this value of m such a solution will be unique. This gives us an algorithm to
compute m4(x):

(a) Determine the least m < n such that the vectors {vy, ..., vy, } are linearly dependent
and the vectors {vy, ..., V,,_1} are linearly independent. This m will be the degree of
ma(x).

(b) Solve the linear system v, + X,_1Vp—1 + - - - + XoVo = 0, in unknowns xg, . . ., X;;_1.

The linear system in step (b) above can be written as B,,x = —v,,, where X = (x,,-1,...,%0)"
and B,, = (Vo | ... | Viu—1) is a matrix indexed by J* x [m], for m € [n]. Since the columns
{vo,...,Vy_1} are independent by assumption, it follows that the matrix B,, has full column
rank. Hence, the system will have a unique solution, as expected.

The algorithm we have described here can be expressed in IFPC as follows. Firstly, note that
rank(M'M) = rank(M) for any rational matrix M, as stated by Lemma Hence, the
vectors {Vo, ..., Vy,_1} are independent if and only if rank(B!,B,,) = m. In other words,
{Vo,...,Vm_1} are independent if and only if the square matrix M,, has full rank, where
M,, := B!, B,,. Thus,

{v0,...,Vm-1} are independent <> det(M,,) # 0.

This test can be expressed in IFPC, for each m = 1,..., n, using Corollary[3.13} To find the
degree of the minimal polynomial in (a), we simply have to iterate this until we find m where
det(My,) # 0 and det(M,,+1) = 0. Having found this value of m, in step (b) we want to solve
the system

Byx = —vy,. ($)
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Define a new system Cx = b, where C = B}, B,, is an [m] x [m] matrix and b = -B!,v,,. In
particular, note that the rows and columns of C are linearly ordered over the integers. Since
C = M,, is non-singular, we solve the system () by taking

x=Cb.

This step can also be expressed in IFPC; the matrix C can be defined in IFPC as we described
in and since the rows and columns of C are linearly ordered, its inverse C7! can be de-
fined in IFPC (even IFP) by the Immerman-Vardi theorem. We conclude with the following
theorem.

Theorem 3.18 (Minimal polynomial over Q). There are formulae 0" . (u,v) and 6% (u,v)

in IFPC[ 15, ], where p and v are number variables, which for all square To-matrices A satisfy:

« A* £ 0" [k,i] iff the i-th bit of the numerator of the coefficient of x* in the minimal

polynomial ma (x) of A over Q is 1; and

« A" £ 0% [k, i] iff the i-th bit of the denominator of the coefficient of x* in the minimal
polynomial ma(x) of A over Q is 1.

g



Chapter 4

Logics with matrix rank operators

It has been observed in recent years that many of the problems separating IFP and IFPC from
PTIME relate to the inability of these logics to express certain basic properties from linear
algebra. For instance, it has been shown that over finite fields, IFP is unable to determine
whether or not a square matrix is singular [9] and IFPC is unable to define matrix rank [4}16].
Both of these matrix properties are computable in polynomial time by Gaussian elimination,
for instance.

In order to address these shortcomings of the two logics, it is natural to consider exten-
sions of fixed-point logic with operators for defining basic linear-algebraic properties. Here
our focus is on well-defined properties of unordered matrices, whose rows and columns are
indexed by arbitrary sets. This is because on ordered matrices, every polynomial-time com-
putable property can already be defined in IFP, by the Immerman-Vardi theorem. In par-
ticular, there is a fixed-point formula that, by performing Gaussian elimination, defines the
row-reduced echelon form of any ordered matrix, from which both the rank and singular-
ity can be deduced. By ‘well-defined’ we mean matrix properties that are invariant under
simultaneous permutation of the rows and columns. It can be readily seen that singularity,
determinant and rank are all well-defined matrix properties in this sense.

In [9]], Blass et al. showed that the class of square singular matrices can be defined in IFPC
over finite fields, over the ring of integers and over the field of rational numbers. In the
previous chapter, we showed that over each of the three aforementioned domains, IFPC can
express the characteristic polynomial—and hence the determinant—of any square matrix.
Furthermore, we showed that the rank of rational-valued matrices can already be defined in
IFPC. Together, these results focus attention specifically on matrix rank over finite fields as
an algebraic property that separates IFPC from PTIME.

To address this shortcoming of IFPC, we introduce in this chapter an extension of fixed-
point logic with terms to express the rank of definable matrix relations over a finite field.
In this setting, we identify a binary relation R € A x A over a set A with a (0,1)-matrix
M = (m;;) by letting m;; = 1if (i, j) € Rand m;; = 0 otherwise. A rank term is an expression
of the form rk, (X, y).¢, where the rank operator rk;, binds the tuples of variables x and y
in the formula ¢ and denotes over a finite structure A the number that is the rank of the
binary relation ¢(%, y)* interpreted as a (0, 1)-matrix over the finite field GF, where p is a
prime number. More generally, we consider rank operators that bind number terms instead
of formulae, so that we can describe the rank of definable matrices that contain entries other

50
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than just zero and one. The logic IFPR is defined by extending fixed-point logic with rules
for forming rank terms of this kind. We show that this logic can both simulate counting and
define solvability of systems of linear equations over any finite field. It follows that IFPR is
strictly more expressive than IFPC. Moreover, since matrix rank can be computed in polyno-
mial time, it follows that IFPR has polynomial-time data complexity, which is to say that all
properties of finite structures definable in IFPR are decidable in polynomial time. Together,
this implies that IFPC g IFPR < PTIME.

Apart from extensions of fixed-point logic with rank operators over finite fields, we also
consider extensions of first-order logic with finite-field rank operators and logics with rank
operators over the field of rational numbers. This will be the topic of where we define
each of these rank logics and study some of their basic properties. In particular, we show that
each type of rank operator can simulate counting. In §4.2]we study the problem of deciding
solvability of systems of linear equations. We show that for each prime p, the class of solvable
linear systems over GF, can be defined in FOR, the extension of first-order logic with rank
operators of the form rk,. Furthermore, we show that IFPR,, the extension of fixed-point
logic with rank operators of the form rky, can define solvability of linear systems over GF .4
for any exponent d € N. We then study arity hierarchies of the rank logics FOR and IFPR in
Here, we define the arity of a rank term rk, (X, y).¢ to be the total number of distinct
variables in x U y. Writing FOR ., and IFPR,,, to denote the sublogic of FOR, and IFPR,,
respectively, obtained by allowing only rank terms of arity at most m, we show that the arity
hierarchies FOR,, £ FOR);3 < ... and IFPR,, S IFPR;3 < ... are strict for each prime p.
This contrasts with the counting logic IFPC, for which it can be shown that unary counting
operators suffice to define counting in any arity. Finally, we conclude by giving a summary in
of all the rank logics defined in this chapter, illustrating their relations with other rank
logics as well as some of the other logics we have studed previously.

4.1 Ranklogics

In this section we introduce extensions of first-order and fixed-point logic with operators
that express the rank of a definable matrix. Here we focus on three kinds of rank logics.
Firstly, in §4.1.2) we consider numerical extensions of first-order and fixed-point logic with
rank operators for matrices over finite fields. In we define similar numerical logics
with operators for defining the rank of rational-valued matrices. Finally, in §4.1.4|we define
(non-numerical) extensions of finite-variable infinitary logic with rank quantifiers over finite
fields. These infinitary rank logics subsume both first-order and fixed-point logic with rank
operators over finite fields, as we will see.

The rank operators and rank quantifiers we define apply to matrices described by number
terms or formulae. This kind of notation was defined in Chapter [3|for matrices over Z and Q.
We begin our discussion by establishing in the corresponding notation for describing
matrices over finite fields.

4.1.1 Specifying matrices over GF, by number terms or formulae

Here we define notation for specifying matrices over finite fields in a two-sorted (numerical)
logic. More specifically, for prime p we introduce two alternative ways to describe matrices
over GF: one by giving a single number term, which is reduced modulo p at every position,
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and another by giving a (p — 1)-tuple of formulae, specifying which matrix entries are non-
zero field elements.

Definition 4.1 (Matrices over GF, described by number terms). Let x and y be tuples of
element variables and consider a number term # in vocabulary 7 where free() € X U y.

+ Givenafinite 7-structure A, we write matz 5(7, A) := 5(X, 7)A" to denote the U(A) ¥l x
U(A) 7! integer matrix defined by #(%, ) over A*. That is, if we write maty 5(17,A) =
(m;) then

mey = nla, b]A’

forall d € U(A)I¥l and b € U(A) 171,
o Let p be prime. Given a finite 7-structure A, we write
fmat; 5(#, A), := mat; (17, A) (mod p)
to denote the matrix over GF, obtained from maty j(#, A) by reducing each matrix
entry modulo p.
|

Overloading our notation, we also consider matrices defined in this way by formulae, rather
than number terms.

Definition 4.2 (Matrices over GF, described by formulae). Consider a prime p and let x
and y be tuples of element variables.

« Consider a formula ¢ in vocabulary 7 where free(¢) ¢ XU y. Given a finite 7-structure
A, we write fmat; (¢, A), to denote the u(A)#l s u(A) 71 (0,1)-matrix over GF,,
defined for all 4 € U(A)I*l and b € U(A) VI by

(d,b) » 1< AE ¢[a,b].

o Let® = (¢1,...,¢,1) beatuple of formulae in vocabulary 7, with free(¢;) € XUy for

all i. Given a finite 7-structure A, we write fmaty ;(®, A), for the U(A) I%] U(A) 171
matrix over GFp defined by

p-1
fmaty 5(D,A), = Z; i-fmatz 5(¢i,A), (mod p).
i=

Example 4.3. For any prime field GF, the formula ~(x = y) defines a square matrix in
which the entries outside the main diagonal are one and all the diagonal entries are zero.
Similarly, for any formula ¢(x), (x = y A ¢(x)) interpreted in a structure A defines a square
diagonal matrix, with 1 in position (a, a) € Ax A on the diagonal if, and only if, (A, a) E ¢. ®
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4.1.2 Logics with rank operators over prime fields

First-order logic with variable rank (FORy,,) is a numerical logic with operators for defining
the rank of matrices over prime fields. The terms and formulae of this logic are defined
inductively in exactly the same way as the terms and formulae of FOC (see §2.5)), except that
we replace the rule for forming counting terms of the kind #, ¢ with the following rule for
constructing rank terms over prime fields:

For all FORy,; number terms t and all tuples of element variables x and y, if
is a number term or a formula of FORy,;, then rk(%, y).(#, t) is a number term
of FORy,;. We let free(rk(X, y).(n, t)) := (free(n) ~ (¥ U ¥)) U free(t).

The semantics of rank terms of FORy,, over vocabulary 7 are defined for all pairs (A*, a),
where A is a finite 7-structure, as follows:

rank(fmatz ;(17,A),) if a(t) = pisa prime number,

a(rk(X, y).(n, 1)) ¢={

0 otherwise.

For prime p, we also consider the logic FOR,, which is defined like FORy,; except that we
replace the above rule for forming rank terms with a rule for constructing terms of the fol-
lowing kind:

If # is a number term or a formula of FOR, and X, y tuples of element vari-
ables, then rk, (X, y).n is a number term of FOR,. We let free(rk,(X, y).%) :=

(free(n) ~ (XU y)).

The semantics of rank terms of FOR, are defined like for FORy,;, where now all matrices
are defined over GF »- Finally, we write FOR to denote the numerical extension of first-order
logic with all the rank operators rk,, for prime p.

We also consider extensions of fixed-point logic with rank operators. For prime p, the
rank logic IFPR,, is obtained by extending IFP in the numerical setting with the rank oper-
ator rk,, just like we obtained IFPC by extending IFP with counting operators before. We
write IFPR for the numerical extension of IFP with all the rank operators rk,, for prime p.
Similarly, we write IFPRy,; for the numerical extension of IFP with rank operators over fields
of variable characteristic.

It can be seen that for each prime p and each formula ¢ € FOR,, there is a formula ¢" €
FORy,, which is logically equivalent to ¢ over finite structures. For instance, ¢’ can be ob-
tained from ¢ by replacing every occurence of a rank term rk, (%, y).n in ¢ with the term
rk(x,y).(y,t,), where t, = 1y + --- + Ly is the number term defined by adding together p
copies of the constant 1y. Similar obversations can be made about the other rank logics we
have considered, as stated by the following lemma.

Lemma 4.4. For prime p, FOR;, £ FOR < FOR,,, and IFPR, < IFPR < TFPR ;. O
For a formula ¢ € FORy,, of vocabulary 7, let
T(¢) := {t | arank term rk(Xx, y).(#, t) occurs in ¢ }

be the set of all number terms that define the prime characteristic of some rank term in ¢.
Given a finite 7-structure A, let [I(p,A) := {t*" | t € T(¢)} denote the interpretation of
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all the number terms in T(¢) over A and set I1(¢) = Ugefin[r] [1(¢, A). Now it can be
seen that the key difference between the logics FORy,,; and FOR (and likewise for the logics
IFPRy,, and IFPR) is that for each formula ¢ € FOR there is a logically equivalent formula
¢’ € FORy,, for which the the set I1(¢") is finite. This is generally not true for formulae in
FORyar, where each rank operator is applied to a field of prime characteristic p which may
depend on the size of the underlying structure. However, the following lemma shows that
the range of primes available to formulae in FORy,, and IFPRy,, is not arbitrary.

Lemma 4.5. Consider a vocabulary t. For any number term t in IFPR,,,[ 7] with free(t) = &,
there is a polynomial q : Ng — Ny so that t*" < q(|A|) for any finite t-structure A.

Proof. We prove this by induction over terms. Clearly, the statement holds for the number
constants 0 and 1. Suppose now that s and ¢ are number terms whose value is bounded above
by polynomials g and g, respectively. Then the terms s - t and s + t are bounded by polyno-
mials gsq; and g +q;, respectively. Finally, consider a number term s = rk(x, y).(#, t). Since
the rank of any matrix is bounded above by both its row and column dimension, it follows
that the value of s is bounded above by the polynomial n* where k = min{||%|, | #|}. O

Corollary 4.6. Consider a vocabulary 1. For any formula ¢ € IFPR,,.[ 7] there is a polynomial
q: No - Ny so that m < q(|A||) for all A € fin[7] and m € T1(¢p, A). O

We have seen that rank logics are numerical logics defined in exactly the same way as count-
ing logics, except that rules for forming counting terms are replaced with rules for forming
rank terms. Alternatively, instead of replacing rules in this way we could have defined rank
logics by adding the rules for constructing rank terms to the set of rules for the corresponding
counting logic. This, however, would have made no difference in terms of expressive power,
as the following theorem shows.

Theorem 4.7. For prime p, FOC £ FOR, and IFPC < IFPR,,.

Proof. Consider a formula y(x) in vocabulary 7. Define the formula ¢(x, y) = (x = y) A
y(x). As in Example it can be seen that for any prime p and finite 7-structure A,
fmat, , (¢, A), is a square diagonal (0, 1)-matrix, with one in position (a, a) € U(A) x U(A)
on the main diagonal ifand only if A = ¢[a, a]. Moreover, by the definition of ¢, it holds that
Ak ¢[a,a]ifand only if A & y[a], for all a € U(A). The rank of the matrix fmat, ,(¢,A),
is just the number of non-zero entries along the main diagonal, which is the same as the
number of satisfying assignments to y from A, by the above. Hence, for any prime p it holds
that

(rkp (%, 7).9)* = (),

for all finite 7-structures A. Hence, counting terms can be simulated by rank terms. The
theorem now follows by a simple induction on formulae. O]

Finally, we note that all the rank logics IFPRya;, FORy,;, IFPR, FOR, IFPR;, and FOR, (for
prime p) are closed under Boolean operations as well as applications of rank operators (and
thereby first-order quantification). It follows readily that all these logics are closed under
first-order reductions.
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4.1.3 Logics with rank operators over Q

For completeness, we also define a logic with operators for expressing the rank of rational-
valued matrices. The terms and formulae of first-order logic with rank over Q (FORg) are
defined inductively in exactly the same way as the terms and formulae of FOC, except that
we replace the rule for forming counting terms of the kind #, ¢ with the following rule for
constructing rank terms over the rationals:

Let X and y be tuples of element variables and let v be a number variable. If ¢,,,
¢4 and y are formulae of FORq then rkq (X, y).(¢n, ¢4, ¥, t) is a number term
of FORg. We let

free(rko(X, y).(@n, 4> ¥> 1)) =
((free(p,) U free(gy) ufree(y)) N (XU y)) U free(t).

The semantics of rank terms of FORq over vocabulary 7 are defined for all pairs (A*, «),
where A is a 7-structure, as follows:

. rank(M) if M = maty ; ,(¢n, 94, ¥, t, A) is defined ,
a(rko(%, 7)-(9n > s 1)) = o
0 otherwise,

where mat; 5., (¢, ¢4, V> t, A) denotes the matrix with entries from Q we defined in §3.3.1
Recall from Corollary|[3.17|that the rank of rational matrices can be expressed in IFPC. Also,
we can see that the simulation of counting terms by rank terms defined above for rank opera-
tors rk, (Theorem[4.7) is valid for rank operators over Q as well. Therefore, the logic IFPRg,
obtained by extending IFP in the numerical setting with rules for constructing rank terms
over (Q, coincides exactly with IFPC over finite structures. We summarise these observations
as follows.

Corollary 4.8. Over finite structures, FORg < IFPRg = IFPC. Ul

4.1.4 Infinitary logic with rank quantifiers

In this section we consider extensions of finite-variable infinitary logic with quantifiers for
expressing matrix rank. These rank quantifiers, which can be seen as special types of the
Lindstrom quantifiers which we discussed in §2.2.7} are defined as follows.

For each integer i > 0 and prime p, define an m-ary rank quantifier rk? which binds exactly
m variables and (p — 1)-formulae. For each prime p and integers k,m > 1, with m < k,
we write Rg;m to denote k-variable infinitary rank logic of arity m over GF,. This logic is
obtained by extending the formula-formation rules for k-variable infinitary logic £ with
the following rule:

If ¢1,..., ¢p-1 are formulae, X and y are non-empty tuples of distinct variables
with |X U y|| = m and i > 0, then rkzz,i(fc',}).(gol, ..o Pp-1) is a formula. We let
free(rk?’(k’,j}).(gol, o @p1)) = (Ui free(oi) N (XU y)).
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The semantics of rank quantifiers of le,;m over vocabulary 7 are defined for all pairs (A*, &),
where A is a finite 7-structure, as follows:

AE rklz,i(k',}).(gol, ...»@p-1) if and only if rank fmatg 5((1,..., @p-1),A), 2 i.

Additionally, we can define rank quantifiers k3, rklfi, rk;i and rk;i, by a simple combination
of rki"-quantiﬁers.

We write R® to denote finite-variable infinitary logic with rank operators of any arity and
over any prime field. For m > 2, we write RY,,, to denote the fragment of R in which
each formula uses only rank operators arity at most m, and for prime p, we write R3,, to
denote the fragment of R, in which each formula uses only rank operators over GF,. We
also define similar restrictions of first-order and fixed-point rank logics. That is, for each
m > 2 we write IFPR,.,, for the class of all those IFPR,,,-formulae in which all occurrences
of rank operators are of arity at most m. Also, for m > 2 and prime p, we write IFPR,;,, for
the restriction of IFPR,,,, where each formula has only rank operators of the form rk,. The
corresponding restrictions of FORy, (FOR;;, and FOR,,,) are defined in exactly the same
way.

Our main interest in studying the infinitary logics Rf,;m is to analyse the expressive power
of first-order and fixed-point logics with operators for matrix rank. We will see examples
of this later in where we show that rank logics form a strict arity hierarchy, and in
Chapter [} where we develop a game-theoretic proof method for proving non-definability
results for rank logics. Recall that by Theorem we have IFP § £ and IFPC 5 C”. In
other words, both fixed-point logic and fixed-point logic with counting are subsumed by the
corresponding infinitary logic. Below we establish a similar correspondence between fixed-
point rank logics and infinitary rank logics.

First though, we need an intermediate lemma, to translate from rank terms binding a
single number term to rank terms binding a tuple of formulae. That is, we write IFPR}, for
the logic defined in exactly the same way as IFPR,,;, except that the rule for forming rank
terms is replaced with the following rule, where p is prime:

If g1, ..., ¢p-1areformulae of IFPR7 , x and y are non-empty tuples of distinct
element variables with X U y|| = m, and ® = (¢1,...,¢,-1), then rk, (X, y).®@
is a number term of IFPR7,.

Here the semantics are defined exactly like before, this time by considering the matrix defined
by the tuple of formulae ®.

Lemma 4.9. For each integer m > 2 and prime p, IFPR,, = IFPR7,,, over finite structures.

Proof. Let m > 2 and p be prime. To show that IFPRy;,, < IFPR;,, consider a rank term of
IFPR;,, of the form rk, (X, )., where # is a number term. For each i € [p — 1], define a
formula ¢; by

¢i(%,y) = 3u<n(%y) (n(%.y) = i+u-p).
In other words, ¢; (X, y) defines the predicate “n(X, y) =i (mod p)” Let® = (@1,...,¢p-1).
It is now clear that for any finite structure A,

(rkp (%, 7)) = (rk, (%, 7). ),
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asrequired. The remainder of the induction is straightforward. The other direction, IFPR},, <
IFPR ., can be proved similarly. O]

Theorem 4.10. For each integer m > 2 and prime p, IFPR . 5 Ry,

Sketch proof. To prove this theorem, we need to show that every formula of IFPR,,, with-
out free number variables can be translated into a formula of R;;,,,. Following the proof of
Lemma 3.2 in [29]], we show that all occurrences of number variables and generation of fixed-
points can be expanded uniformly with respect to the cardinality of the underlying structure.
That is, the formulae we construct in R;‘j;m will be of the form

\V 37"x (x =x) A gy,

n<w
where ¢, captures the meaning of the formula over structures of size n. Note here that the
logic Ry, does not have actual counting quantifiers (and therefore we write these above only
as shorthand) but we can simulate counting quantifiers with rank quantifiers, in a similar way
as w simulated counting terms with rank terms before.

The expansion of first-order and fixed-point operators can be considered by standard
means; for instance, see the proof of Corollary 1.30 in Otto [58]. Number variables and
number terms can be dealt with in a similar way as in the proof of IFPC £ C* by Gridel and
Otto [29, Lemma 3.2], by replacing the translation of counting terms into counting quanti-
fiers with a translation of rank terms into rank quantifiers. For completeness, we retrace the
main argument here.

Consider a formula ¢(x, v) of IFPR}, = IFPRy;;, (Lemma , where x is an element vari-
able and v is a number variable. We translate ¢(x, v) with respect to v to a sequence of
formulae (@ (x))k<e> Where for each k < w the relation defined by the formula ¢ (x) (with
respect to x) agrees with the relation defined by the formula ¢(x, v) when v is assigned in-
teger value k. The induction argument is similar to the proof of Lemma 3.2 in [29], with the
exception of formulae containing rank terms, which we explain here.

To give an example of the induction step with formulae involving rank operators, we
consider an IFPR7,, -formula ¢(x,v) = v <1k, (9,2).(y1, ..., yp-1), with [y U Z| = m, the
maximum arity, and each y;(x, y,Z) a formula. By the induction hypothesis, suppose that
Vin(x,y,Z) captures the meaning of y;(x, y,Z) on structures of size n. Then the uniform
family for ¢ is defined with respect to n and k by

k(%) =115 (5, 2).(Wim -+ Wp-rn),

where k < n™. Here n is the parameter for the size of the structure and k is the parameter
for the number variable v. The rest of the induction proceeds as in the proof of Gridel and
Otto.

Finally, since queries definable in IFPRy,, are in PTIME, while R, can express even non-
recursive queries (see , it follows that the inclusion of IFPR;, in Ry, is proper. [

Corollary 4.11. IFPR,,, $ R and IFPR.;, § RY.,, for each integer m > 2. O]
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4.2 Systems of linear equations

Let G be group, written additively with identity 0. An equation over G is an expression of
the form
Vi+Vy+-+ vy, =06

where each v; is either a variable, an inverted variable or a constant group element. The
expression can be satisfied if there is an assignment of values from G to the variables so that
the equality holds. A system of equations over G is a collection of such equations. A system
of equations is said to be solvable is there is an assignment of values which simultaneously
satisfies each equation.

More often, we consider equations where the variables are allowed to take values in a
field instead of a group. Let F be a field and write + and - for addition and multiplication in
F, respectively. A linear equation over F is an expression of the form

a;-x1+ay- X+ +am-x,=D>b,

where b is a constant element from F, each x; is a variable and each scalar coefficient g; is a
constant element from F. A system of linear equations over F (or linear system, for short) is
a collection of such expressions; the system is said to be solvable if there is an assignment of
the variables to elements in F that simultaneously satisfies each equation.

The complexity of determining the solvability of a system of equations varies according
to the domain that the variables are assigned values from. It is known that the problem of
deciding solvability of a system of equations over a fixed finite group is in PTIME if the group
is Abelian and NP-complete otherwise [28]. When we consider linear equations over a field
we can write the system as a matrix equation Ax = b and apply methods from linear algebra
to its study. Such a system is solvable if and only if b is contained in the span of the column
vectors of A; or in other words if and only if the two matrices A and (A[b) have the same
rank. This shows that the solvability of a system of linear equations over a field can be decided
in PTIME since matrix rank can be computed in polynomial time by Gaussian elimination,
say.

Atserias, Bulatov and Dawar [4] considered the problem of defining solvable systems of
equations over a finite Abelian group. They showed that for any fixed finite Abelian group
G with at least two elements, the class of solvable systems is not definable in finite-variable
infinitary logic with counting. When the group G arises as the additive group of a finite field
F, the problem of deciding solvability of a linear system over G can be trivially reduced to the
problem of deciding solvability over F. That is, a linear system over G = (F, +) can simply be
seen as a linear system over F where all scalar coeflicients appearing in the linear equations
are either 1 or —1p. This immediately shows that the class of solvable linear systems over a
fixed finite field is not definable in finite-variable infinitary logic with counting and hence
also not in IFPC.

In this section we consider the problem of defining solvable systems of linear equations over
a finite field. From the basic characterisation of solvability in terms of matrix rank, it follows
easily that the rank logic FOR, can express solvability of linear systems over GF, for each
prime p. With a little more work, we can also show that for each prime p and d € N, IFPR,
can decide solvability of linear systems over GF .. Before making these statements more
specific, we define our chosen representation of linear systems as finite relational structures.
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A system of linear equations over a finite field can be represented as a three-sorted finite
structure in vocabulary 7y := {A, B} U Tgelq, where A is a ternary relation symbol of type
(1,2,3) and B is a binary relation symbol of type (1,3). Here 7 = {+£ x5, Of, 1¢} denotes
the signature of fields defined in with all relation and constant symbols restricted to
the third sort. A Tsys-Structure S with sorts I, ] and F, in that order, describes the system of
linear equations

ASx = BS over F,

where the field F = (F, +f, xf, 0F,1f ) is obtained from the reduct S|7geq by retaining only
the elements of the third sort F, AS is an I x ] matrix over F, B is a column vector indexed
by I over F and x = (x;) jey is a row vector of distinct variables, indexed by J. The system S is
solvable over F if there is a column vector ¢ indexed by J over F such that

ASc = BS.

Here, the multiplication of matrices is with respect to the field operations of F. For m = p?,
where p is prime and d € Ny, write Solvable,, for the class of solvable 7y-structures over
a field of cardinality m. Moreover, for prime p write Solvable?™ := Uy, Solva ble .« for the
class of solvable 7y,-structures over a non-prime field of characteristic p. Our main result in
this section is the following.

Theorem 4.12. For each prime p the following hold:
(i) Solvable, is definable in FOR,; and
(ii) Solva blef,oW is definable in IFPR,,.

It can be seen that there is a number term of IFPC that defines the field characteristic over
any structure of vocabulary 7ge1q. Writing Solvable := U prime (Solva ble, uSolva blegow), we
therefore get the following corollary.

Corollary 4.13. Solvable is definable in IFPR, ;. O

Keeping in mind the result of Atserias et al. [4] and our previous discussion, Theorem
immediately implies the separation of IFPC and IFPR,, for each prime p. Furthermore, since
matrix rank can be computed in polynomial time, it follows that IFPRy,, has polynomial-
time data complexity, which is to say that all properties of finite structures definable in IFPRy,,
are decidable in polynomial time. This shows that both IFPR and IFPR,,, are candidate logics
for PTIME, as stated in the following.

Corollary 4.14. For each prime p, IFPC g IFPR,, < IFPR < IFPR,,, £ PTIME. O
The proof of Theorem is given in the next two subsections, where we separately consider
linear equations over prime fields and linear equations over prime-power fields.

4.2.1 Linear equations over prime fields

In this section we consider systems of linear equations over a finite field GF,, where p is
prime. Our aim is to prove part (i) of Theorem [4.12} that is, to show that for each prime p,
the query Solvable, is definable in FOR,,.
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The proof we give is based on the following elementary result from linear algebra. Con-
sider a system of linear equations Ax = b over a field F. Such a system is solvable if and only
it b is contained in the span (over F) of the column vectors of A. In other words, the system
is solvable if and only if adding b as a new column to A does not increase the rank of the
matrix. This relates the question of solvability to the calculation of matrix rank. However,
the rank operators we introduced in apply only to matrices specified by a number term
or a formula of a certain kind. In other words, these operators cannot be used directly on
matrices described by a structure of vocabulary 7. Therefore, our main effort in this sec-
tion is to show that there are number terms of FOR,, that translate any linear system given by
a Tgys-structure to an equivalent linear system on which we can apply rank operators. Once
this is done, it is straightforward to check if the original system of equations is solvable by
comparing the rank of two matrices, as described above.

More specifically, our proof of Theorem (i) consists of three main steps. Firstly, we
consider systems of linear equations given by a pair of number terms (%, y) and () which
are interpreted over a finite structure A. We show that there is a sentence of FOR,, depending
only on « and f3, that defines exactly the class of finite structures A where the system

mat,;,};(cx,A)p X = mat;(ﬂ,A)p

is solvable over GF. This follows more or less directly from the definition of the rank op-
erator rk,. Here, we write mat;(f3, A), to denote the GF ,-column vector defined by f3 over
A in exactly the same way we described matrices in Next, we use this result to show
that basic problems of graph reachability (symmetric and deterministic transitive closure)
can be described in FOR,, by a reduction to the problem of deciding solvability of lin-
ear systems over GF, defined by number terms as above. As a corollary, we establish that
FO+STC < FOR;, and FO+DTC < FOR,. Finally, we show that there is a pair of number
terms of FOR [ 75ys] which over any linear system S, with prime field F, describe a system
of linear equations equivalent to S. Here we crucially rely on Lemma [3.1, which states that
there is an FOC+DTC-definable isomorphism F = Z, which associates each element of F
with an integer in the range [0, p — 1]. Since FOC < FOR, and FO+DTC £ FOR, this iso-
morphism is also definable in FOR,,. Putting all these results together, we can finally show
that the class of finite solvable 7y,-systems can be defined in FOR,, which gives us the proof

of Theorem [4.12] (i).

Lemma 4.15. Consider a prime p let a(X, y) and f(X) be number terms in FOR,[1], where
X and y are tuples of element variables. Then there is an FOR [ 7]-sentence ¢ for which it holds
that for any t-structure A: A & ¢ if and only if the linear system described by o and f over A
is solvable over GF .

Proof. Consider a 7-structure A along with number terms (%, y) and S(X) of vocabulary
7. Together, a, f and A describe the system of linear equations A,x = bg over GFj, where
A, = matg j(a, A), is a matrix indexed by U(A) Il x U(A) Pl and bg := matz(B,A), isa
column vector indexed by U(A)!%|. This system is solvable if and only if adding bg asa new
column to A, does not increase the rank of the matrix, as discussed before. We show that
this condition can be expressed by a sentence of FOR,. To do that, first consider the number
term defined by

)’(55’)7)’,;2) =(1- ’7€qua1(z’ )’,)) B+ Wequal(z’ )’,) o,



4.2. Systems of linear equations 61

where the number term fequa (2, y') = #,,((w = z) A (z = ")) takes value 1* € Ny if z = y’
and takes value 04 € Ny otherwise. Here z is a parameter that allows us to identify one
particular element of A and we assume that y’, w and z are variables distinct from those in ¥
and y. Over A, y(%, y') describes a matrix indexed by U(A) ¥l x U(A)I71+1, which consists
of one copy of A, and | A|I7- (| A| -1) copies of the column vector bg, stacked side-by-side.
Based on this, and the preceding discussion, it can now be seen that the following sentence
of FOR,, defines solvability of the system A,x = bg over A:

Vz (rky(%,7y").y = tkp (3, ) .).

Note that the matrix defined by y on the left-hand side of the equality will contain multiple
copies of the column vector bg, which of course does not alter the solvability of the system.
O

We now consider the definability in FOR,, of certain graph-reachability problems. Our aim
is to show that FO+DTC g FOR,, for any prime p, as discussed earlier. The first problem we
consider is symmetric (s, t)-reachability, which, given a graph G with distinguished vertices
s and t, asks whether there is a path from s to t in G. We show that this problem is definable
in FOR,.

Let G = (V, E) be a graph and let s and t be two vertices in V. For a prime p, let Sg s+
be the system of linear equations over GF,, with variables x, for all v € V" and equations:

o x, —x, =0, for every edge e = (u,v) € E;
e xs=1and x; = 0.

We observe that the edge equations of S s, force variables x,, and x, to take the same value
if u and v are in the same connected component of G. This gives us the following lemma.

Lemma 4.16. The linear system Sg s, is solvable over GF , if and only if there is no path between
s and t in the graph G.

Proof. For one direction, suppose x € GF},’ is a solution to the system Sg . Label each
vertex v € V with x, € GF,. By equations x, — x, = 0, it follows that all vertices in the same
connected component of G must be assigned the same label. Equations x; = 1and x; = 0
then imply that s and ¢ belong to different connected components of G, and are hence not
reachable from one another.

For the other direction, suppose there is no path between s and ¢ in G. Then a solution
to Sg,s,¢ is obtained by setting x,, = 1 for all vertices v in the connected component of G
containing s, and x, = 0 for all other v. O]

The matrix of the system Sg s is easily defined in the graph G by a numeric term 7(x;x2, ¥)
taking the value 1 at (ss,s) and (¢, t), and for edges (u,v) € E, taking the value 1 at (uv, u)
and —1 at (uv,v). Note that every edge equation is stated twice in equivalent ways, which
of course does not affect the solvability of the system. This shows that there is a first-order
reduction from symmetric (s, t)-reachability to the problem of deciding solvability of linear
systems over GF,. By applying Lemmal[4.15} we get the following result.

Lemma 4.17 (Symmetric transitive closure). Symmetric (s, t)-reachability is definable in FOR,,
for all primes p. O]
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The above method for defining reachability fails in general when applied to directed graphs.
We can, however, consider an important special case, which is graphs whose vertices have
out-degree at most one. Specifically, let G = (V, E) be a directed graph. Define the deter-
ministic part E; C E as all those edges (u,v) in E for which u has out-degree one. That
is,
Eg:={(u,v) € E|Yw (E(u,w) - (v=w))} CE.

Given G and vertices s, t € V, the deterministic (s, t)-reachability problem asks whether there
is a path from s to ¢ in the deterministic graph G4 := (V, Ey).

Lemma 4.18 (Deterministic transitive closure). Deterministic (s, t)-reachability is definable
in FOR,, for all primes p.

Proof. Let G be the undirected graph obtained from G, by removing any outgoing edge
from t and then taking the symmetric closure of E;. Clearly, if there is a directed path from s
to t in G4, the same path connects s and ¢ in G;. Conversely, if P is an undirected s, t-path in
G, following P backwards from ¢ to s we always use edges from G in the reverse direction
since all vertices have out-degree at most one and t has no outgoing edge. Thus, there is a
path from s to t in Gy if and only if there is an undirected (s, t)-path in G;. Observe that
the graph G, is first-order definable over G; that is, there is a first-order unary interpretation
that associates G to G. Hence there is a first-order reduction from deterministic (s, t)-
reachability to symmetric (s, t)-reachability, and the lemma follows. O

Corollary 4.19. On the class of all finite structures, FO+STC s FOR;, and FO+DTC g FOR,
for all primes p.

Proof. Let p be prime. We have shown that both symmetric and deterministic (s, t)- reach-
ability can be expressed in FOR,. By treating s and ¢ as parameters to the respective reach-
ability queries, it follows that both the symmetric transitive closure and the deterministic
transitive closure of any formula ¢ (%, ) can be expressed in FOR,. For a separating exam-
ple, note that FO+STC and FO+DTC do not have the ability to count, and cannot express
that a set has an even number of elements (see e.g. Ebbinghaus [23]). O

For the proof of Theorem (i), it remains to show that linear systems represented by 7ys-
structures can be described by number terms, as in the statement of Lemmal[4.15] First note
that we can express both counting and deterministic transitive closure in FOR, for any prime
p, as shown above. Hence, FOC+DTC £ FOR,. It then follows from Lemmathat there is
a formula of FOR, that maps any linear system over a field of cardinality p to an equivalent
linear system where the field is described by number terms. This allows us to prove the
following result.

Lemma 4.20. For prime p, there are number terms a.(x, y) and B(x) of FORp[7],] for which
it holds that for any ty-structure S over a field of cardinality p, S € Solvable,, if and only if the
linear system maty ,(a,S), - x = mat,(,S), is solvable over GF .

Proof. Let 7(z) be a number term as in Lemma([3.1]} Then for any linear system S of vocab-
ulary 7y, over a field F of cardinality p, it follows that n(z)¥" defines a field isomorphism
t : F — Z,, where every element of U(F) is mapped to an integer in the range [0, p - 1].
Now consider element variables x and y that range over the ‘row sort’ and ‘column sort’ of S,
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respectively. Then we define the required number terms a(x, y) and (x) by mapping each
matrix element occurring in the linear system S according to the isomorphism ¢, as follows:

a(x,y) = #W(Hz (A(x, y,2) A (n(w) < ;1(2))) and
B(x) = #,(3z (B(x,2) A (n(w) < n(2))).

Here w is an element variable that ranges over the ‘field sort’ of § and the counting operators
can be simulated by rank operators rkp, as shown before. OJ

Finally, the proof of Theorem [4.12] (i) follows by combining Lemma with Lemma[4.15]

4.2.2 Linear equations over prime-power fields

In this section we study the solvability of linear equations over prime-power fields. Our
aim is to prove part (ii) of Theorem that is, to show that for each prime p, the query
Solva bleff,Ow is definable in IFPR,. When combined with the results of the previous section
(concerning definability of Solvable, in FOR,), this concludes the proof of Theorem [4.12}

The idea behind our proof is as follows. Let p be prime and d > 1 an integer. The finite
field of non-prime cardinality p? is commonly represented as a quotient ring G Fo[X]/(g(X))
where g(X) is a monic irreducible polynomial of degree d over GF,. This was discussed fur-
ther in and then §3.21 Another way to represent the elements of GF 4 is to consider a
certain ring of invertible d x d matrices over GF,. This kind of representation has the nice
property that the field operations over GF s are simply the corresponding operations on ma-
trices (in particular, the inverse of an element in GF 4 is obtained by taking the inverse of the
corresponding matrix). This approach was described in a short note by Wardlaw [66]] and is
mentioned briefly by Lidl and Niederreiter [53} Chapter 2]. After reviewing the construction
described by Wardlaw, we show how the resulting matrix representation can be expressed
over Tgelg-structures in IFPR,. This in turn allows us to translate a linear system over Gde,
given as a structure in vocabulary 7y, to a (slightly larger) linear system over GF, which
is solvable if and only if the original system is solvable. The proof then follows by applying
Lemmal4.15

We start by reviewing some of the theory behind our construction. Write K = GF, for the
prime field with p elements and consider a monic (not necessarily irreducible) polynomial
g(X) = X™ + @y X"+ - + a1 X + ag, where the a; are scalar coefficients from K. The
companion matrix of g(X) is the m x m matrix

0 0 —ag

1 : :
B:=|0 :

: 0

0 0 1 —-ama

over K. That is, B is obtained by taking an (m —1) x (m — 1) identity matrix, adding a zero
row of length m —1 at the top and then appending the column vector —(ag a; =+ a,;-1)" to the
right of the resulting matrix. It is well known in linear algebra that the minimal polynomial
and characteristic polynomial of B are both equal to g(X) (see e.g. Horn and Johnson [42}
Theorem 3.3.14]). Thus, g(B) = 0.
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Now let f(X) be a monic irreducible polynomial of degree d over K, let B be its com-
panion matrix and write F = GF 4. Because f(B) = 0 and the minimal polynomial of B is f,
it follows that there is no polynomial g of degree less than d for which g(B) = 0. Therefore
the ring K[ X]/(f(X)) is isomorphic to the ring of matrices K[B]/(f(B)), via the map that
sends a polynomial g € K[X]/(f(X)) to the matrix g(B) € K[B]/(f(B)). Thus

F= K[X]/(f(X)) = K[B]/(f(B)) = K[B]/(0) = K[B],

which shows that the matrix ring K[ B] is a representation of the field F. Here K[ B] is the ring
that consists of all sums of powers of B over K, with multiplication and addition obtained by
directly multiplying and adding the matrix elements. In particular, note that each matrix in
K[B] is invertible.

Since F = K[B], it follows that K[B] has exactly p? elements, one of which is the zero
matrix 0 and another which is the identity matrix I. In general, it is not the case that K[ B] =
{0,1,B,B%,..., B }. However, since the multiplicative group F* is always cyclic (see
§2.7.2), we know there is a matrix M € K[B] such that K[B] is generated by M — that is,
a matrix M for which it holds that

K[B] = (M) = {0,, M, M2, ..., M?" "} = K[M].

One way to construct a monic irreducible polynomial of degree d over K is to consider the
minimal polynomial of a primitive element « € F. This was discussed in more detail in
Consider a polynomial f(X) of this form and let B be its companion matrix. Then an
isomorphism ¢ between the fields K[B] and F is given explicitly by ¢ : g(B) ~ g(«), for all
g(B) € K[B], where g is a polynomial of degree less than d. That is, if g(B) = c;_1B*™ +
.-+ + 1B + ¢g, where each ¢; € K, then

d-1

gla)=cgqa’ +--+qa+ceF.

It necessarily follows that B must be a cyclic generator of K[B]. For otherwise, there must be
distinct integers k, m such that B = BX. But then a™ = ((B™) = 1(B¥) = a*, which implies
m = k as « is a cyclic generator of F*.

Our aim is now to show that we can define in IFPC a matrix representation of the elements
of a finite field of the form described above. Here we critically rely on Lemma 3.7} which says
that the minimal polynomial of a primitive element can be defined in IFPC. In order to for-
mally state our result, we need to introduce some new notation. Consider a 7gq-structure
F, an integer m < |F| and a number term #(x, y) in vocabulary 744, where x and y are
element variables. If < is a linear ordering of U(F), then we write submaty, ,(#,F, m, <) to
denote the integer matrix of dimension m x m obtained from maty,,(#, F) by retaining only
rows and columns indexed by those elements a € U(F) where the position of a in the order-
ing < is at most m. Also, for a primitive element a € U(F) we write <, for the ordering of
U(F) induced by a. This ordering is definable in FOC+DTC by Corollary[3.6]

Lemma 4.21 (Definable field isomorphism). There is an IFPC number term n(x, y,z) in
vocabulary g4 for which the following holds. Consider a Tfg-structure F and a primitive
element a € U(F). Let |E| = p?, where p is prime, and write B for the d x d companion matrix
of the minimal polynomial of « over Z,. Here we assume that the elements of B are integers
from the set {0, ..., p—1}. Then for any field element g € U(F) \ {O}f},
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the matrix M := submat,.,(17(x, y, g/2),F,d, <) is equal to B, where i is the
a-order of g in F.

Furthermore, let M be the all-zero matrix when g = 0}:. It then follows that the map g — M,
defined by 1(x, y, z) over F is an isomorphism ¥ — Z,[ B], where we view each Mg as a matrix
over Zy.

P

Proof. Consider a 7g1q-structure F of cardinality pd and let a be a primitive element of F. By
Lemma([3.7} we can define the minimal polynomial of a over Z, by a number term of IFPC.
From the term defining the minimal polynomial, it is straightforward to construct a number
term defining the corresponding companion matrix B. By Corollary [3.5 we can define in
FOC+DTC the a-order of each element in F and the matrix powers B can be defined in IFPC
by a result of Blass, Gurevich and Shelah [9] (see also discussion in Chapter . This finally
allows us to consider the map f — B’ where i is the a-order of an element f € F. It should
be clear by the above that this map can be defined by a formula of IFPC, as required. O]

We conclude this section with the following lemma. Theorem (i) then follows by com-
bining the result with Lemma [4.15]

Lemma 4.22. For prime p, there are IFPR,, number terms a(x, z, y, w) and p(x, z) in vocab-
ulary Ty for which it holds that for any ts-structure S with underlying field F of characteristic
p» S is solvable over F if and only if the linear system mat, ., («,S), - X = maty,(f,S), is
solvable over GF .

The proof of this lemma is based on the following idea. Consider a finite field F = GF . and
its prime field K = GF,. Let S : Ax = b be a system of linear equations over F, where A is an
n x m matrix and b is a column vector of length n. Let B be a d x d matrix over K such that
there is a field isomorphism ¢ : F — K[B]. We can translate S to a system of linear equations
over K as follows. First, expand each of the variables in x to a d x d block of distinct variables.
Each of these variables will be assigned a value from K. Let x, denote the resulting block of
d x d variable matrices. Second, expand each element a of the matrix A to ((a), a d xd matrix
of elements from K. This gives us an nd x md matrix A, over K. Likewise, we can expand
each element of b in this way, which gives us an n x d matrix b, over K. Now it can be seen,
as ¢ is an isomorphism of fields, that the system of linear equations A ,x, = b, has a solution
over K if and only if Ax = b has a solution over F. Of course, the matrix equation Apx, =b,
is technically not a linear system in the traditional sense, as b, is a proper matrix and not a
vector. However, it can be turned into a linear system as follows:

For each linear equation a;x; + ... a, X, = ¢ of S over F, write

(a)Xa+...1(am)Xm =1(c)

for the corresponding matrix equation over K, where each X; is a d x d matrix
of distinct variables. The expression on the left-hand side can be written as a
d x d matrix M = (m;;) where each entry m;; is a linear polynomial in variables
X coming from the elements of X, ..., X,,. Writing «(c) = (d;;), it follows that
((a1)Xy + ...1(am)Xm = 1(c) can be seen as a system of d” linear equations,
with equation (i, j) given by m;;(X) = d;;.
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Proof of Lemma Consider a 74y-structure S with underlying field F of characteristic p.
By Corollary primitive elements of F can be defined by a formula of FOC+DTC g
FOR,. Let y € U(F) be one such primitive element. By Lemma we can define in IFPC
IFPR, a field isomorphism ¢ : F — Z,[B], where B is the companion matrix of the minimal
polynomial of y. Now we can follow the steps outlined above, and reduce the linear system S
over F to a system of linear equations over the prime field Z,. It can be seen that this system
can be described by a pair of number terms a(x,z, y,w) and S(x,z). Here the variables
z and w, ranging over the field (third) sort of S, are needed to describe the expansion of
the field of F to matrix elements from the ring Z,[B], using the ordering <, induced by y.
Explicitly describing this construction is rather tedious, but fairly straightforward.

Now it should be clear from our earlier discussion that the system described by « and 8
has a solution over Z, if and only if § has a solution over F. The statement of the lemma now
follows by quantifying over all primitive elements . O]

4.3 Arity hieararchy of rank logics

For n € N, we write £“(Q,,) to denote the logic obtained by augmenting finite-variable
infinitary logic with all Lindstrom quantifiers of arity at most n. It was proved by Hella [37]
that for any n € N, the logic £“(Q,,) is not expressive enough to define all PTIME queries
on the class of finite structures. More specifically, Hella shows that for each n > 1, there is
a vocabulary 7,1 and a class of finite 7,,,;-structures which is decidable in polynomial time
but not definable by any sentence of £*(Q,,). Since IFPC § L“(Q)), this result extends the
result of Cai, Fiirer and Immerman [12] discussed in

Our aim in this section is to show that the arities of rank operators yield a strict hierarchy.
For that purpose, we consider for each prime p and integer n > 2 the rank logics FOR,,, and
IFPR,, defined in where

FOR,, <TFPRy, $ R, < L£9(Q0).

Our main result is the following.

Theorem 4.23 (Strictness of the rank-arity hierarchy). For any integer n > 2 and prime p
there is a vocabulary 7,1 and a class of finite 7,.,-structures which is definable by a sentence
of FOR ;41 but not definable by any sentence of LY(Q,). Thus, IFPRy,, § IFPRy,.1 and
FOR,, § FOR 41 for any n > 2 and prime p.

We prove this theorem in two parts. In we consider the original queries defined by
Hella to separate £°(Q,) from PTIME and show that for each n > 2, the corresponding
query on 7,4 ;-structures can be expressed using a linear system over GF, of arity »n + 1. This
shows the strictness of the rk-arity hierarchy'. In we briefly describe how Hella’s
construction can be extended to work for all primes. As a result, we show the strictness of
the arity hierarchy of rk, for every prime p.

"Keep in mind that the minimum arity of rank operators is two, so we only consider the logics FOR,, and
IFPRy,, for n > 2.
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4.3.1 Hella’s construction for characteristic two

Throughout, we assume that all graphs are finite, undirected and connected. The following
construction is due to Hella [37].

Definition 4.24 (Building blocks). For n > 2,let C, := {c1,..., ¢y, d1, ..., d,} denote a set
of size 2n. We equip C, with the preorder <,, defined by

x < y <> there are some i, j € [n] with i < jsuch that x € {¢;,d;} and y € {¢j, d;}.
Let P, :={dy,...,d,} c C, and define n-ary relations R, and R; by

(a1,...,an) €Ry <> a; <, <y a, and [{i]|a; € P,}| =0 (mod 2),

(ar,...,an) €R, = a; <, - <y a, and ||{i|a; € P,}| =1 (mod 2).
[

For n > 2,let 7, = (Ry, E, <) be a vocabulary where R,, is n-ary and both E and < are binary.
We note that 7,, depends on the integer # as it contains a relation symbol of arity ».

Definition 4.25 (Hella structures). Let # > 2 and assume G = (V, EY, <) is a graph which
is regular of degree n, and <© is a strict linear order on V. For every vertex u € V, fix an
enumeration hy, : {v | (u,v) € E¢} — [n] of its n neighbours. Then for any S € V, we define
the 7,,-structure D,,(G, S) as follows, where we let D = U(D,,(G,S)):

e Dg:=V xCy

. R?”(G’S) is the set of all tuples ((u, a1),...,(u,a,)) in Dg so that either u ¢ S and

(ai,...,an) €R;,orueSand (ay...,a,) € R;

« EP(GS) js the set of all pairs ((u, ¢;), (v, ¢;)) and ((u,d;), (v,d;)) in (Dg)? such that
(u,v) € E, i = hy(v),and j = h,(u); and

e (u,a) <P(@S) (y,b)ifand only if u <G vor (u=v) A (a<,b).
]

Notice that the ordering <D(G:S) has width two, as for every (u, a) € Dg, there is exactly one
(u,b) € Dg with neither (u, a) <P(%) (u,b) nor (u, b) <P (4, a). We call such (u, a)
and (u, b) an incomparable pair. Hella [37] proves the following:

Lemma 4.26. Let n > 2 and assume G = (V, E®, <%) is an ordered and n-regular graph. Then
forall S, T c V, the structures D,,(G, S) and D, (G, T) are isomorphic ifand only if | S| = | T
(mod 2). O

By this lemma, there are exactly two non-isomorphic structures D,,(G, S) for any n-regular
ordered graph G. Write A,(G) := D,(G, ) and B,(G) := D,(G,{u}) for some u € V.
One of the main results of [37] is the following theorem, which shows that there is no fixed
sentence of £L*(Q,,) that can distinguish between all A,.4;(G) and B,,41(G), with G ordered
and (n +1)-regular.
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Theorem 4.27 (Non-definability of Hella structures). For any n € N, there is a family of
ordered (n + 1)-regular graphs Gy with |G| = O(k?), so that for any L*(Q,)-sentence ¢
there is k, € N such that A,,1(Gi) £ ¢ < B, (Gy) E ¢, forall k > k,. O

In contrast, it can be shown that for any ordered n-regular graph G, with n > 2, the two struc-
tures A, (G) and B, (G) can be distinguished by a polynomial-time algorithm. Theorem
therefore implies that IFP(Q,,) does not capture PTIME for any »n € N.

We now show that for n > 3, A,,(G) and B, (G) can be distinguished by a system of lin-
ear equations over GF,. More specifically, we show that given a 7,-structure of the form
D, (G, S), with n > 3, there is a first-order definable linear system of arity n which is solvable
if and only if | S| is even. Here the arity of a linear systems Ax = b is simply the number of
variables needed to describe the matrix A and the column vector b over D,,(G, S). Moreover,
we show there is a sentence of FOR; using rank operators of arity at most # that can deter-
mine whether the system is solvable. Combined with Theoremand FORy, $ L9(Qn),
this gives us the following theorem.

Theorem 4.28 (Strictness of the rk,-arity hierarchy). For any n > 2 there is an FORy,41-
definable query that is not definable in L*(Q,,).

Now consider a generic 7,,-structure T = (V x Cp,, RL, ET,<T), n > 3. Let St be the system
of linear equations over GF, with variables x(,, ,) for every (u, a) € V x C,, and the following
equations.

o Incomparable pair equations. For every incomparable pair (u, a), (u, b) we have the
equation:
X(u,a) + X(u,b) = 1.

« Edge equations. For each ((u,a), (v,b)) € ET we have the equation:
X(u,a) + X(v,b) = 0.

« R-equations. Finally, for every n-tuple ((u,ay),..., (4, a,)) € R} we have the equa-
tion:
X(u,ay) +...+ X(u,a,) = 0.

The following is not hard to establish.

Lemma 4.29. There are first-order formulae (X, y) and f(X) in vocabulary T, where X is
an (n — 1)-tuple of variables, which over any T,-structure T define the linear system Sr.

Proof. Write Ax = b for the system of linear equations St over GF;. In the following, we
define formulae a(%, y) and S(X) which describe the (0,1)-matrix A and the (0,1)-vector
b over T, respectively. Here, X is an (n — 1)-tuple of element variables and »n > 3. First, we
define the set of R-equations. Note that for every (n —1)-tuple

a=ua1),...,(u,a,-1))

with a; <, ... <, a,_1, there is at most one element (u, a,,) such that ((u, a;),...,(u,a,)) €
RY. Given a tuple d of this form, let a(d/X, y) express the linear equation X(ua) +ove t
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X(ua,) = 0. That s, for all b € U(T), a(X, y) is defined so that T & «a[d, b] if and only if
b = (u, a;) for some 1 < i < n. Similarly, f(x) is defined so that T = —f[d]. Clearly, this can
be expressed in first-order logic.

The edge equations can be defined at row indices v, ... v,_3, V41 = v for whichv; = ... =
v,_» = wand where (w, v) € ET. Thatis, given an (n—1)-tuple d = (w, ..., w, v) of this form,
a(%, y) is defined so that for all b € U(T) it holds that T £ «[4, b] if and only if b € {v, w}.
Moreover, for a tuple a of this form, B(x) is defined so that T = -f[d].

Finally, the incomparable pair equations can be defined at row indices vy ... v,—2, V1 = v
for which v; = ... = v,_, = w and where (w, v) is an incomparable pair. More specifically,
given a tuple d = (w,...,w,v) of this form, a(x, y) is defined so that for all b € U(T) it
holds that T = a[d, b] ifand only if b € {v,w} and (%) is defined so that T = f[d]. O

The previous lemma shows that the linear system St is first-order definable over any 7,,-
structure T. In the following we shift our attention to 7,-structures of the form D, (G, S).

Lemma 4.30. Let n > 3 and consider an n-regular ordered graph G = (V, E®,<%). Then for
any S €V, the system Sp(G,s) is solvable over GF; if and only if | S| =0 (mod 2).

Proof. We first show that the system is solvable when S = @. In this case a solution can be
constructed explicitly by setting

0 ifa=c; forsome i,
X(u,a) =

1 ifa = d; for some i,

for all (u,a) € V x C. Since Sp,(g,s) is definable by a first-order interpretation ® by
Lemmaand O is invariant under isomorphism, it then follows that Sp, (¢,s) is solvable
whenever |S| =0 (mod 2).

Claim 1. Any solution x of Sp,(g,s) induces an isomorphism 1 : D, (G, S) — A, (G) by letting

(u,a;) = (i) (e =0
o (u’di) lfx(u,ai) =1

Proof. The map ¢ is well-defined since Sp,(g,s) ensures that in every incomparable pair

(u,¢i), (u,d;), exactly one of the corresponding variables is set to 1. It is immediately clear

that ¢ is an isomorphism with respect to E and <. Now if ((#,ay),...,(u,a,)) € RE”(G’S),

we must have x,, o,y = 1for an even number of i € [n] since otherwise one of the R-equations

would be violated. Thus, (¢(u, a1),...,1(u,a,)) € R‘,?”(G) by the definition ofR‘,?”(G) and (. If

((w,a1),...,(u,a,)) ¢ RE(G’S) we must have x(, ,,) = 1for an odd number of i € [n], since

replacing any (u, a;) with its incomparable partner gives a tuple in RE”(G’S) whose sum is
forced to be even (by one of the the R-equations). Therefore (1(u, a1),...,1(u,a,)) ¢ RA (@)

and ¢ is an isomorphism. O]

By this claim, the system Sp, (g,s) is not solvable whenever |S| =1 (mod 2), which com-
pletes the proof. O]
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Combining Lemma and Lemma [4.29] we see that there is a first-order reduction from
the problem of deciding if |S| is even, given a 7,-structure of the form D,(G,S), to the
problem of deciding the solvability of a system of linear equations over GF,. By Lemma[4.15}
there is a sentence ¢ of FOR; that determines exactly when such a system Ax = b is solvable,
by comparing the rank of the matrix A and the augmented matrix (A | b). However, a close
look at the proof of Lemma [4.15] reveals that this is obtained by using rank operators whose
arity is one greater than the arity of the formula defining the linear system. This would put ¢ €
FORy;,.11, which does not give us the strictness result that we want. That is, in order to prove
Theorem we have to determine whether Sp, (¢,5) has a solution without increasing the
arity of the linear system, which is (n — 1) + 1 = n. For this, we need the following lemma,
which is easy to prove. Here, if A is a matrix, ¢ a column vector of A, and b a column vector
of the same dimension as ¢, then we write A.} to denote the matrix obtained from A by
replacing the column ¢ with the column ¢ +b.

Lemma 4.31. Let A be a matrix that does not have full column rank over some field F. Then
the linear system Ax = b is solvable if and only if rank Ay, < rank A for all columns c of A.

Proof. If Ax = b is solvable, then b is in the span of the columns ¢; of A, which means that
there are a; € F such that }°; a;c; = b. Fix any column c. By a column basis of A we mean
a set of column vectors of A that is a basis for the vector space spanned by column vectors
of A. First, assume there is a column basis B of A that does not contain c. Then B is also a
column basis for Ay, since ¢ + b is in the span of B, and hence rank A = rank A.. Next,
assume that all column bases of A contain ¢ and let B be such a column basis. Let B’ be
obtained from B by exchanging ¢ with ¢ + b and suppose there is a column ¢ of A}, that is
not in the span of B". Then (B’ ~ {c + b}) u {c!} is a linearly independent set of columns
from A with the same cardinality as B, hence a column basis of A not containing c. This
contradicts our assumption, and therefore B’ spans the column vector space of A.}. Hence,
rank Acp = |B’| = |B|| = rank A. Since column bases always exist, these two cases are
exhaustive and we conclude that rank Ay, < rank A.

For the converse direction, suppose that Ax = b is not solvable, so b is not in the column
span of A. By assumption, A does not have full column rank. Let B be a column basis of A
and let ¢ be a column which is not in B. Then ¢ + b is not in the span of B since ¢ is, but b is
not, and therefore rank A . = 1+ rank A > rank A. O

Putting everything together, we can finally prove the main theorem of this section.

Proof of Theorem[4.28} Consider an n-regular graph G = (V,E®, <), with n > 3, and let
S ¢ V. Write Ax = b for the system of linear equations Sp, (¢,s) over GF,. By Lemma A
and b can be defined by first-order formulae a(%, y) and 3(x) over D,,(G, S), respectively,
where X is an (n — 1)-tuple of variables.

Since G is n-regular and n > 3, it follows that G contains a cycle. Let H be such a cycle
and let ] be the collection of all (&, a) € V x C, where u € H and u has a neighbour v € H
for which there is some b € C,, with ((u,a), (v,b)) € EP*(%5), Then it is readily verified
that on every row, the sum of the entries in the columns indexed by ] is zero in GF,. Thus,
the matrix A does not have full column rank. Using Lemma it is easy to construct a
sentence ¥ € FORy;, which determines the solvability of Sp,, (¢,s)- The theorem now follows
from Lemma and Theorem O
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4.3.2 General construction for any prime characteristic

The results of the previous section illustrate that the construction of Hella is essentially a
clever encoding of linear equations over GF,. In this section we describe briefly how this
construction can be extended to work over GF, for any prime p. Most of the proofs herein,
which can be obtained by adapting the corresponding proofs from Hella [37], are omitted.

Definition 4.32 (Generalised building blocks). For n > 2 and prime p, let

Ch={cilie[nl,re0,p-1]}
denote a set, equipped with the preorder </ defined by

x <b y:< thereare some i, j € [1n] with i < j such that
xe{ci[ref0,p-1]}and ye{c;[re[0,p-1]}.

Let p : C5 — [0, p — 1] be the function defined by p : x ~ s if and only if x = ¢} for some
i€[n]ands € [0, p—1]. Define n-ary relations R}, for every r € [0, p — 1] by

(an,...,a,) €R = a;<b - <ha, and > p(ai) =r (mod p).
i=1

Clearly, for p = 2 we obtain Hella’s building blocks from above, i.e. C, = C2. For n > 2
and prime p, let 7, := (R, Eo, ..., E, 1, <) be a vocabulary where R,, is n-ary and all other
relations are binary.

Definition 4.33 (Generalised Hella structures). Let n > 2 and assume G = (V, EC, <G) is
a graph which is regular of degree n, and < is a strict linear order on V. For every vertex
u € V, fix an enumeration h, : {v | (u,v) € E¢} — [n] of its n neighbours. Then for any
prime p and function y : V — [0, p — 1], we define the 7, ,-structure D5 (G, y) as follows,
where we let D¢ := U(D%(G, y)):

e Dg:=V xCh

. R,?ﬁ(G’Y) is the set of all n-tuples ((u,a;),...,(u,a,)) in (Dg)" for which it holds
that (ay,...,an,) € R}, with r = y(u).

o Foreachk e [0,p-1], EkDg(G’Y) is the set of all pairs ((u, c}), (v, cj)) in Dg x Dg, with
i,je[n]andr,se [0, p—1], such that (u,v) € EC,i=h,(v), j=hy(u)andr+s=k
(mod p);

o (u,a) <Di(G) (v,b)ifand onlyifu <S vor (u=v) A (a<ib).
|

It can be seen that there is a first-order interpretation © of 7, ; in 7, such that for any ordered
n-regular graph G = (V, E®,<%) and S ¢ V, we have ®(D, (G, S)) = D?(G, ys), where x5 :
S — {0,1} is the characteristic function of S. The following lemma classifies the generalised
Hella structures up to isomorphism. The proof, which is similar to the proof of Lemma [4.26]
above from [37], is omitted. Here, if y : V' — [0, p — 1] is a function, then we write y(V) :=
Xy ().
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Lemma 4.34. Let p,n > 2 with p prime and assume G = (V,ES,<%) is an ordered and n-
regular graph. Then for all y,o : V — [0, p — 1], the structures D4(G, y) and D4(G, ¢) are
isomorphic if and only if y(V) = ¢(V) (mod p). O

It can be shown that the analogue of Theorem[4.27)also holds for the generalised Hella struc-
tures. That is, it can be shown that for each n € N, prime p and r € [0, p — 1], there is
no sentence of £(Q,) that defines the class of all structures of the form D?_ (G, y) with
G = (V,EC,<%) ordered and (n +1)-regular and y(V) = r (mod p). This can be proved by
viewing the pair (G, y) as a circuit, where each vertex v is given a charge y(v), and showing
that in a certain two-player game on Dﬁ .1(G,y), one of the players has a strategy to hide the
total amount of charge (V') from the other player. This strategy can be derived by playing
a nested “cops-and-robber game” on the circuit (G, y). We omit the details here, but note
that a similar idea is used in Chapter[7|to construct a winning strategy in a different kind of
game.

Finally, given a structure D’ (G, y), it is not hard to construct for each r € [0, p — 1]
a first-order definable linear system over GF, of arity n + 1 which is solvable if and only if
y(V) = r. Putting all this together, we get a proof of Theorem[4.23for all primes p.

4.4 Relationships between rank logics

We conclude this chapter by summarising the known relationships between the rank logics
we have defined as well as some of the other logics we considered in this chapter.

co - RY RY
_J J J

IFPRg — IFPC ¢ IFPR, IFPR — IFPRy,;
1 i 1 1

FORg FOR, —— FOR — FORy;

~ )

FOC FO+DTC

Figure 4.1: Relationships between rank logics. The direction of arrows indicates (semantic) inclusion
of the respective logics over finite models; curved arrows (—) denote proper inclusion. The separation
of FOC and IFPC can be deduced e.g. from Etessami [47].



Chapter 5

First-order logic with rank

By extending fixed-point logic with operators for expressing the rank of definable matrix
relations, we obtain a logic which is strictly more expressive than IFPC and is potentially a
logic for PTIME. In order to understand both the strengths and limitations of this logic, it
is important to study how much of its expressive power relates to the inherent capabilities of
rank operators and how much of its expressive power relates to the interplay of rank terms
and inductive definitions. A natural starting point in that study is to consider rank operators
in the context of first-order logic.

In this chapter we study the extension FOR of first-order logic by rank operators and, for
every prime p, its fragment FOR,, that only has rank operators over the field GF. It turns
out that these rank logics are surprisingly expressive. By a simple comparison of rank terms,
FOR is able to define the solvability of systems of linear equations over a finite field of prime
cardinality, as we discussed in Chapter From the work of Atserias et al. [4], it then follows
that FOR # IFPC. In this chapter we give further proof of this result, by showing that the two
other examples showing that IFPC § PTIME—the problem of computing the parity of CFI
graphs and the problem of deciding isomorphism of multipedes—are both also definable in
FOR. This is the subject of In §5.2) we establish the descriptive complexity of first-order
rank logics over ordered finite structures by proving that for each prime p, FOR, captures
MOD,L and that FOR captures LL, which are natural complexity classes that characterise
different levels of logarithmic space complexity. These results further cement the status of
first-order rank logics as objects worthy of study in themselves.

5.1 Expressive power of FOR

In [12]], Cai, Fiirer and Immerman showed that IFPC does not capture PTIME on the class of
all finite structures, thereby settling what had been an important open problem in descrip-
tive complexity theory. For the proof, they constructed a query on a class of graphs that can
be defined by a polynomial-time computation but not by any sentence of IFPC. Since then,
other constructions that expose the limitations of IFPC have been given. Gurevich and She-
lah [36] defined a class of finite rigid structures known as multipedes, and considered the
problem of uniformly defining a linear order over this class. They showed that this problem,
while computable in polynomial time, is not expressible by any fixed formula of IFPC. Blass,
Gurevich and Shelah [9] later turned this construction into a decision problem and proved

73
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that IFPC is not able to tell whether two given multipedes (each with a designated vertex)
are isomorphic or not; a problem which again is decidable in polynomial time.

In this section we show that both these decision problems separating IFPC from PTIME can
be expressed in the logic FOR;, by considering first-order definable systems of linear equa-
tions over GF,. This gives us yet another separation of the fixed-point logics IFPC and IFPR,
in addition to results concerning solvability of linear equations over a finite field. Through-
out, all graphs are assumed to be undirected, unless otherwise noted.

5.1.1 Cai-Fiirer-Immerman graphs

We recall the definition of Cai-Fiirer-Immerman (CFI) graphs, which were constructed by
Cai et al. [12] to define the query separating IFPC from PTIME. The following presentation
of the graphs is adapted from Dawar et al. [21], who show that the CFI query can be expressed
in the logic of choiceless polynomial time. Note that, unlike the presentation in [21], we do
not require an ordering on the underlying graph G.

Definition 5.1 (CFI graphs). Let G = (V, E) be a connected graph with at least two vertices
andlet T ¢ V. The CFI graph GT = (V*, E*, C*) is a two-coloured graph with vertex set V*,
edge relation E* and a unary relation C*, denoting the colour, which are defined as follows.

o Vertices. Denote the set of edges incident to v € V by E(v). For each vertex v € V, let
I(v) be the collection defined by

I(v) = {(vz:ZcE(v)and|Z|=1 (mod 2)} ifveT,
" |{vz:ZcE(W)and|Z|=0 (mod2)} ifveV~T.

Define three collections of elements V := U,ey I(v), E := {ep,e1 | e € E} and C :=
{ec| e € E}. Finally,set V*:= VUEUC.

o Edges. Define the edge relation E* ¢ V* x V* by

E* ::{{vz,el} :veV,vzel(v)andee Z} U
{{vz,e0} :veV,vzel(v)andee E(v)\ Z} U
{{ei, e.}:ecEandie€ {0,1}}.

« Colour relation. Finally, define the unary colouring relation C* := C c V*. That is, all
the vertices e, are coloured in the same way and differently from all the other vertices.

Note that the role of the e, vertices and the relation C* in the definition of G is only to allow
the nodes e; to recognize their respective partners e;_;. We refer to the sets of vertices C E
and V as the colour nodes, outer nodes and inner nodes of G, respectively. The parity of a
CFI graph G is the parity of |T|. We say GT is even if it has even parity and odd if it has
odd parity. An example of a CFI graph is given in Figure[5.1]
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— GRAPH G
Uy Edges to inner
vertices in I(u,)

Edges to inner Edges to inner
vertices in I(ug) vertices in I(uy)

Figure 5.1: A fragment of a CFI graph G” constructed for a vertex v ¢ T C V of degree three, where
G=(V,E)and T ¢ V. Here E(v) = {e, f,g} and N(v) = {u.,uy, ug}. The vertex v is shown in
the inset with the three edges in E(v) labelled. The main figure shows the inner nodes I(v) and the
outer nodes constructed from the edges E(v). Because v ¢ T, all the inner nodes are connected to an
even number of outer nodes with a “1” subscript. Note that there will be edges connecting each of the
outer nodes to the inner nodes constructed from the respective neighbour of v in G. For instance, in
G there will be edges connecting e, and e, to the inner nodes of I(u, ), and so on.

In [12]], Cai et al. show the following.

o For a connected graph G, where every vertex has degree at least two, and all T, S ¢
V(G), the graphs GT and G® are isomorphic if and only if they have the same parity.
Hence there are exactly two non-isomorphic structures G” for any graph G.

« While there is a polynomial-time algorithm that can distinguish between the odd and
even CFI graphs of any graph G, there is no fixed sentence of IFPC that can do the
same.

We now show that the odd and even CFI graphs of any graph G can be distinguished in FOR;.
Let G = (V, E) be a connected graph where every vertex has degree at least two,let T ¢ V
be a collection of vertices and let G! be a CFI graph constructed from G and T. Let Sgr be
a system of linear equations over GF, with variables x,, for all e; € E and xy, forallvy e v,
and the following equations.

« Outer node equations. For each e; € E we have the equation:

Xe; + Xe_;, = L.
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« Inner node equations. For each v; € V we have the equation:

Z Xe, + Z Xey = Z Xyy -

ecZ ecE(v)\NZ vy€el(v)

o Parity equation. Finally, we have the following equation:

Z xy, = 0.

vzeV

The intuition behind this construction is as follows. Firstly, the outer node equations en-
sure that for each e € E, the pair of variables x,, and x., must take opposite values in GF,.
Secondly, observe that for any two inner nodes vz, vx € V derived from the same vertex
v € V, the right-hand side }., ¢;(,) v, of the two corresponding inner node equations are
the same. Furthermore, the variables appearing in the sum on the right-hand side appear
only in those inner node equations that are derived from the vertex v. As a consequence,
any assignment of values to these variables ensures that the right-hand side of all the inner
node equations derived from v have the same value, which we call x,. The idea here is that
xy, = 1ifv € T and x, = 0 otherwise. Finally, the parity equation sums up all the variables
Xy, appearing on the right-hand side of the inner node equations. From the above, it is clear
this amounts to summing up all the distinct x,. By the above, this sum should then equal the
parity of | T|.

The following is not hard to establish.
Lemma 5.2. Sgr is first-order definable over GT.

Proof. Write cpr = {Rg, R¢} for the vocabulary of GT, where RST = E* and RgT =C* If
x € UGT) and Y € U(GT) is a non-empty set then we say that x is connected to Y if there is
at least one vertex y € Y such that (x, y) € E*.

To describe the system Sgr in first-order logic, we first note that there are first-order
formulae ¢ (x), ¢,(x) and ¢;(x) that define the sets C, E and V, respectively. More specif-
ically,

¢c(x) = Re(x),
@o(x) =3y (¢c(y) ARg(x,y)), and
i(x) = =(¢c(x) v 9o (x)).

Similarly, there is a first-order formula

0o(x,y) = (x # y) A po(x) A po(y) A3z (9c(2) ARE(x,2) ARE(y,2)),

that says that x and y are distinct outer nodes derived from the same edge e € E.

We also need a first-order formula 6;(x, y) that relates a pair of distinct inner nodes x
and y if and only if x and y are derived from the same vertex v € V. To define 0;(x, y),
observe that for any pair of (not necessarily distinct) inner nodes vy and v, derived from
the same vertex v € V, there are at least two distinct edges e, f € E such that both vy and v
are connected to {e, e} and both vy and v are connected to {fo, fi} (see Figure[5.] for an
illustration). Conversely, if uyy is an inner node derived from a vertex u € V and u # v, then
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there is at most one edge e € E such that both vy and uyy are connected to {eo, e; }. Indeed, if
such an edge e € E exists then necessarily e = {u, v}. This observation can be used to define
the formula 0;(x, y). To see that, first define a formula

Weonn (%, 2, w) = ¢i(x) A Op(z,w) A (Rg(x,2) V RE(x,w)),

which says that x is an inner node, z and w are distinct outer nodes derived from the same
edge and x is connected to {2z, w}. In other words, for all vy € V and ej, e;_; € E, where
j €{0,1}, it holds that

Gl e Yeonn[Vys€j, e1-j] ifand onlyif v ee.
We also define

Wohare (X, ¥, 2, w) = (x # ¥) A Yeonn (%, 2, W) A Weonn (1> 2, W),

which states that x and y are distinct inner nodes both connected to the set {z, w} of outer
nodes. Finally, we let

0i(x,y) = 3z1, 22,23, 24 )\ (2j # 2k) A Wohare (X5 > 21, 22) A Wshare (%, Y5 23, 24) 5
jk

which has the desired properties.

The system Sgr can now be defined by formulae ¢(x, y) and B(x) over G' in the following
way. The equations for the outer nodes e; are defined at row indices a for which (GT, a) = ¢,.
Similarly, the equations for inner nodes v are defined at row indices a for which (GT,a) &
@i, using 0;(x, y) and the fact that the set of e; with e € Z is exactly the neighbourhood of
vz in GT, and the set of ey with e € E(v) \ Z can be defined similarly. Finally, the equation
that sums all the x,, can be defined at row indices a for which (G”,a) & ¢.; there will be
multiple copies of this equation, which of course does not affect the solvability of the system.
The definition of (x) follows similarly. O

Lemma 5.3. The system Sgr is solvable if and only if G is even.

Proof. We show that the system is solvable when ||T|| = 0 and not solvable when |T| = 1.
Since Sgr is definable by a first-order interpretation ® by Lemma [5.2 and © is invariant
under isomorphism, it then follows that Sgr is solvable if and only if |T| is even.

First suppose T' = @. In this case it is readily verified that any assignment that puts x,, = i for
alle; € Eand Yyyel(v) %vy = 0forallv € Visasolution to Sgr. Next suppose T = {u} where
u is an arbitrary vertex in V. Fix one edge f € E(u) and consider the following equations
from Sgr:

o foreveryve VN {u}: Yoep(y) Xep = Lvyer(v) ¥y

o for u: (ZeeE(u)\{f} xeo) +Xxg = ZuYEI(u) Xuy-

In this subsystem, there is exactly one equation for each v € V. It follows that for all e €
E ~ {f}, the variable x,, occurs exactly twice on the left-hand side of the system, as each
edge is connected to two vertices v € V. However, for the edge f, we get both x5 and xp,
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on the left-hand side. Summing up all the above equations we therefore get on the left-hand
side:

(X 2 x€0)+( > x€0)+xf1

veV{u} ecE(v) ecE(u)\{f}
:2-( Z x€0)+xf0 +)Cf1
ecEN{f}
= xfo + Xfl = 1,

where the last equality comes from the outer node equation derived from f in Sgr and the
summation is over GF,. However, at the same time we get on the right-hand side:

Z Z Xvy = Z Xy, =0,

veVvyel(v) vyeV

where the last equality comes from the parity equation in Sgr (the last equation). Therefore,
the system Sgr is inconsistent and has no solution. O

The preceding lemmas now establish that there is a first-order reduction from the problem
of distinguishing odd and even CFI graphs to the problem of deciding solvability of linear
systems over GF,, which can be defined in FOR, by Theorem Since FOR, is closed
under first-order reductions, we get the following theorem.

Theorem 5.4 (CFI query in FOR;). There is a sentence gcrr € FOR; that holds in structures
G when |T| is even but not in structures GT when |T| is odd. O

5.1.2 Isomorphism of multipedes

In [36], Gurevich and Shelah showed that there is a first-order axiomatisable class of finite
rigid structures, known as multipedes, for which there is no formula of C* that can define a
linear ordering on all class members. As mentioned earlier, Blass, Gurevich and Shelah [9]
later turned this construction into a decision problem and showed that no fixed sentence of
C%, let alone IFPC, can distinguish between a pair of similar but non-isomorphic multipedes.

In this section we show that the problem of deciding isomorphism of multipedes can be
expressed in FOR;, by exhibiting a first-order definable reduction to the problem of deciding
solvability of linear equations over GF,. This is based on the same idea as the reduction we
presented in the previous section, although the construction here is more involved. We start
by recalling the definition of multipedes from [36].

Definition 5.5 (Multipedes). Let Typede := {F,S, H, P,<u, R, c} be a vocabulary where S
and F are unary relation symbols, H and P are ternary relation symbols, <j; and R are binary
relation symbols and ¢ is a constant symbol. A multipede is a finite structure M in vocabulary
Tmpede Which satisfies the following conditions.

+ The universe U(M) is partitioned into two parts F™ and SM. We refer to the elements
of FM as the feet of M and the elements of SM as the segments of M. For each segment,
there are exactly two feet; i.e. |FM| = 2||SM|.

« <M is a total order on the set of segments.
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« RM ¢ F x S is the graph of a function p : F — S from feet to segments such that each
segment is the image of exactly two feet.

Abusing notation, we extend p to amap p : p(F) — p(S) by setting p(X) := {p(x) :
x € X}, forall X e p(F).

« The constant M ¢ F denotes the unique foot with a sho€. The segment in S which is
connected to the shoe cM should always be the first element in the ordering <M.

o HM c § x § x S is a totally irreflexive and symmetric relation that encodes a family
T c p(S) of three-element subsets of S, called hyperedges.

« PM c F x F x F is a totally irreflexive and symmetric relation that encodes a family
IT € p(F) of three-element subsets of F, called positive triples. For each positive triple
p € I1, the image p(p) € S is a hyperedge.

o If h € ¥ is a hyperedge, then there are exactly eight triples of feet mapped by p onto h.
Out of these eight triples, exactly four are positive. Moreover, if X, Y ¢ II are positive
triples of feet with p(X) = p(Y) = h, then |[X A Y| = 0 (mod 2), where X A Y
denotes the symmetric difference of X and Y. In other words, if p(X) = p(Y) = h
then Y can be obtained from X by interchanging the two feet of an even number of
segments in h. [ |

Remark. Gurevich and Shelah consider more than one type of multipede in their paper [36].
In particular, they refer to the multipedes we consider here as ‘3-multipedes, to distinguish
them from 1-, 2- and 4-multipedes. As we will only consider 3-multipedes in the present
discussion, this distinction will be unnecessary. The 3-multipedes of Gurevich and Shelah did
not actually have a designated vertex with a shoe; that definition comes from Blass et al. [9],
who described the multipede isomorphism problem we consider here. Finally, note that the
number ‘3’ in the term 3-multipede does not refer to the fact that each hyperedge in X has
size three.

The isomorphism problem for multipedes takes as input a pair of multipedes and asks whether
the two multipedes are isomorphic. This problem can be turned into a Boolean query which
consists of all pairs of multipedes (M;, M, ) with M; = My; here a pair of multipedes can be
represented as a single finite structure as we will explain below. In [9] Blass et al. show the
following.

« The isomorphism problem for multipedes can be decided in polynomial time.

o The isomorphism problem for multipedes is not definable in C* and hence not in IFPC
either.

In the following we fix a pair of multipedes M, and M, presented as a single relational struc-
ture M := M;UM; in vocabulary {F}, S, Hy, P, <1, Ry, ¢1} U{F,, Sz, Hy, P5, <2, Ry, 2}, where
<1 and <; denote the two respective linear orders of segments, as discussed earlier. We write
IT;, 2; and p; for the set of positive triples, the set of hyperedges and the function mapping
feet to segments, respectively, implicit in the definition of each M;, where i € {1,2}. Write
p = p1 U p; for the function whose domain is the union of F'' and F}".



5.1. Expressive power of FOR

80

LEGEND

Segment at index i
in ordering <

Foot attached to
segment

Foot with a shoe

Segment hyperedge

Figure 5.2: A multipede with 34 segments and a shoe. The hypergraph over the segments has three
hyperedges: {34,7,16}, {10,1,21} and {7, 2,23}. It follows that the multipede has 12 positive triples,
four for every hyperedge (although these are not shown in the figure). Lines connecting feet to seg-
ments represent the function p; note that each segment is connected to exactly two feet.

For i € {1,2}, write 0;(x, y) = Si(x) ASi(y) A (¥ <i x) A (¥ # x) for the formula that
says that x and y are segments belonging to the same multipede, and y is strictly less than x
in the ordering <;. Define the FOC-term

ord(x) = #,(61(x, y) v 02(x, y))

for which it holds that whenever either $;(x) or S, (x) holds, ord(x) denotes the position of
x in the respective segment ordering <; or <. Then the formula

n(x,y) = Z\l(sl(xi) AS2(yi) A (ord(x;) = ord(yi))) (*)

defines over M the graph of a function (SM)* — (SM)? that sends 5 ~ £ if and only if the
triples s and £ occur at the same position in the lexicographic ordering of triples induced
by <M and <}, respectively. Here ¥ = (x1,x2,x3) and ¥ = (y1, y2, y3) are triples of distinct
variables. Finally, define a sentence of FOC

hyperiso = (#:(S1(x)) = #x(82(x))) A VX y (X, ) —=(Hi(%) < Ha())-
Then M E hyperiso if and only if the two hypergraphs
(8" H <) and (85", Hy", <)
are isomorphic. Assume hereafter that hyperiso is satisfied in M and let

e (SM EML My (M g )
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be the (unique) isomorphism of the two hypergraph structures defined by #(X, ), above.
Now all that remains to decide if M; = M, is to check whether the feet of the two multipedes
can be matched up to preserve (a) the shoe constant, (b) the function that associates feet
with segments and (c) positivity of feet triples. By our discussion above, it is clear that this
problem is not expressible in C“. However, we show that it is expressible in FOR;, as follows.

Consider the set V := FlMlL'JFgIZL'JZl and let Sy be the system of linear equations over GF;
with variables x, for all v € V and the following equations.

« Segment equations. For each segment s € SM' U SM2, with a pair of feet p~!(s) = {e, f},
we add the equation
Xe + Xf =1

That is, x, and x; must take opposite values in GF,.

o Hyperedge equations. For each hyperedge h € X; we add exactly 2 x 8 equations. Firstly,
we add one of the following equations for each three-element set of feet {e, f, g} ¢ F™M
that p; maps onto h:

(Xe+xf+xg)+xh :lif{e,f’g} € Hl)
(xe +xp+xg) +x, = 0if {e, f, g} ¢ IN.

Secondly, we add one of the following equations for each three-element set of feet
{e, f, g} € F™ that p, maps onto 1(h) € Xy:

(xe + x5 +xg) + x5 = Lif {e, f, g} € Iy,

(xe +xp+xg) + x5, =0if {e, f, g} ¢ I,

Note that we use the same variable x;, for the equations defined by sets of feet from
FMi as well as the equations defined by sets of feet from FM2,

o Shoe equation. Finally, we add the following equation for the pair of shoes e = civh f =
My,

cy
Xe+ Xf = 0.
That is, x, and x; must take the same value in GF,.
We can index the equations in Sy by the set
E:=SMusMey (FM x FM s BM sy U (FM2 x EM2 5 B2 3)).
Observe that the set of hyperedges X, does not appear in E.
Lemma 5.6. Sy is first-order definable over M.

The proof of this lemma is straightforward though rather tedious.
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Proof. Throughout this proof, we will use lower-case Latin characters x, y, z, ... to denote
variables that range over feet and we will use lower-case Greek characters v, i, y, ... to de-
note variables that range over segments. Note that this is purely for notational purposes;
all variables ranging over U(M) are untyped. We also write X, y,... and 0, {i, ... to denote
triples of variables, where the individual components are indexed as X = (xj, x2, x3), for ex-
ample.

In our definition of the system Sy we will have to find a unique triple (e, f, g) to repre-
sent each hyperedge {e, f, g} € 21, to ensure the correctness of the linear system (that is, we
want only one variable x;, for each hyperedge h). For that purpose, we consider for i = 1,2
the formula

Ohyp,i (0) = /_\Si(Uj) ANH;(0) A (01 <5 02) A (02 <5 03),
j

for which it holds that for all hyperedges {e, f, g} € Z;, (M, e, f, g) & Ohyp,i(0) if and only if
e, f, g arelisted in increasing order with respect to <M. To define the system Sy we now con-
sider each type of equation separately. For tuples of variables (x1,...,x,) and (y1,..., ¥m)»
we will write (x1,...,Xm) = (¥1, ..., ¥m) as a shorthand for A\;(x; = y;).

« The segment equations can be defined by formulae

aseg (V3 y) =(S1(v) A Fi(y) A Ri(y>v)) v (S2(v) A Fa(y) A Ra(y,v)) and
Bseg(v) =S1(v) v S2(v).

o We use the formula
yl(f,ﬁ) = ehyp,l(lj) A /\Rl(xi, U,’)

to pick out those rows that are indexed by a triple of feet (e, f, g) € (FlMl)3 and a
hyperedge h € =; with p;({e, f, g}) = h. Similarly, we use the formula

y2(%,0) = 3 (Onypa () A Onypa () A \(ord (i) = ord(vi)) A A\(Ra(xis 1))

to pick out those rows that are indexed by a triple of feet (e, f,g) € (FA*)* and a
hyperedge h € X, with p2({e, f, g}) = 1(h). Here 1 is the isomorphism of hypergraphs
we have fixed before. Observe that the isomorphism ¢ simply maps each segment in
SMi to the segment in )™ at the same position in the respective segment ordering;
that is, for all segments s € SM, 1(s) = t if and only if ord (x) M%) = ord(x) M1,

We also define a formula
Oref (V) = (v1=v2) A (v1 = v3) A Si(v1) A (ord(v1) = 1n),

for which it holds that M = O.f[s1,52,53] ifand only if s; = 5, = s3 = s € Sf/ll and s
is the first segment in the ordering Sivh. That is, we treat (s, s, s) as a fixed “reference
triple” of segments, which explains the naming of the formula. This formula will be
used to ensure that variables in the hyperedge equations won’t be repeated, as we see

below. In particular, note that (s, s, s) is not a hyperedge.

The hyperedge equations over M; can now be defined by formulae

— 3 - -
ahyp,1 (%, 5y, A) =p1(X, ) A (((_\:/l(y =x1)) A Oret(1)) v (i = 1) A (y = 1))
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and
Brypa (X, i) =y1(%, §i) A Pi(X).

Note that in the definition of apyp,1 (X, fi; 1), we used the shoe constant ¢; to ensure
that each equation contains exactly one occurence of a “hyperedge variable” xj,.

The hyperedge equations over M, can be similarly defined by formulae ayyp, 2 (X, fi; ¥, 1)
and ﬁhyp,z(fc, Q).

« The shoe equation can be defined by formulae

e (05323 7) =(0 = @) A (12 = €2) A (31 = 30) A ((y =) ¥ (= 32)) and
Bshoe (X1, x2) =(x1 # x1).

Finally, the system Sy can be defined by formulae a(v, %, ji; y, X) and (v, %, i) over M,
where

a(v, %, i3, A) =((x1= %2) A (32 = X3) A Orer(A) A dseg(3 7))
V(31 # x2) A (X2 = %3) A Bref(A) A ghoe (X1, %23 )
V(21 # x2) A (x2 % x3) A (%1 % X3) A (ahyp1 (%, sy, A) v Ahyp,2 (X5 ﬁ;y,;l))),

and (v, X, ji) is defined similarly. Here the intended meaning is that the segment equations
are indexed by tuples vxy when all the components of X are equal, the shoe equation is
indexed by a tuple vxp when x; # x, = x3, and the hyperedge equations are indexed by
tuples vx i when all the components of X are distinct. Note that there is redundancy in this
description as some of the equations will be repeated a number of times. However, this does
of course not affect the solvability of the system. O]

Recall that we assume that M = hyperiso and that there is an isomorphism ¢ of the two
disjoint segment hypergraphs in M.

Lemma 5.7. The system Sy is solvable if and only if M} = M.

Proof. First, suppose Sy is solvable and let T : V' — GF; be an assignment of values to the
variables (x, ),ev that satisfies Sm. Defineamap y : FlM1 - F;VIZ that pairs together each foot
of M; with a foot of M, as follows:

y(f) =g = 1(pi(f)) = p2(g) and T(f) = T(g),

forall f € FM and g € F)™. That is, for each segment s € My, y maps the two feet attached to
s to the two feet attached to :(s) in My, where : is the isomorphism of segment hypergraphs
we have fixed earlier. There are two possible injective mappings from the pair of feet p;(s)
to the pair of feet p;'(1(s)) and y is defined by choosing the one mapping that agrees with
the truth assignment T; that is, a foot f is mapped to a foot g if, and ony if, variables x; and
Xg are assigned the same value by T.

Combining ¢ and y, we define a map ® : M; - M; by @ := 1 u y. That is, ® maps
segments according to ¢ and maps feet according to y. We claim that @ is an isomorphism
of multipedes. To see this, first observe that @ preserves the hypergraph structure and the
ordering of segments as it extends the hypergraph isomorphism . Also by the definition of
y, it is clear that @ preserves the relation that associates feet with segments. Furthermore:
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« According to the segment equations of Sy, y (and hence ®) is bijective.

« According to the shoe equation of Sy, T(cM') and T(c3?) must be equal. Hence, @
maps the shoe of M; to the shoe of M,.

« Suppose {e, f,g} € F™ is a three-element set of feet that p; maps onto a hyperedge
h e HM. Thus,

(xe +xp+ Xg) +xp = (xy(e) +Xp(f) + xy(g)) + X,

over GF,. It follows from the definition of the hyperedge equations of Sy that

{e.f.g} eIl = {y(e),y(f),y(g)} €y,

which shows that ® maps positive triples to positive triples and thus preserves the
positivity relation.

Together, this settles the claim.

Now suppose @ : M; — M; is an isomorphism of multipedes. We will show that there is an
assignment of values to the variables (x, ),cy that satisfies Sy.

Firstly, for each segment s € Sivh with an associated pair of feet p;* = {e, f}, let T assign
opposite values to the two feet e and f. Thatis, T(f) =1- T(e) and T(e) =1- T(f). This
choice of assignment can be arbitrary. Doing this for all segments defines T' on FIMI. Now
for each hyperedge h € X, consider a positive triple {e, f,g} € IT;. Assign a value to the
variable xj, such that (x, + xf + x,) + x), = 1. This choice does not depend on which positive
tuple we consider, as all the four positive triples mapped onto h are related by the condition
|[X AY| =0 (mod 2), and permuting an even number of feet of any tuple (i.e. assigning
opposite values to an even number of the three variables x., x and x¢) always preserves the
parity of the sum x, + x¢ + x; in GF,.

Now all that remains is to define T on Féwz. We do that according to the isomorphism
®; that is, for each f ¢ FIM1 we set T(®(f)) := T(f). This concludes the definition of the
assignment T. It remains to argue that this is a satisfying assignment to the system of linear
equations Sy. But this should be clear from our construction of T. In particular,

« segment equations are satisfied because T assigns opposite values to the two feet at-
tached to any segment;

« hyperedge equations are satisfied because of the way T assigns value to each hyperedge
variable x;; and

« the shoe equation is satisfied because T respects the isomorphism ®. O]

The preceding lemmas, along with the FOC-sentence hyperiso, now establish that there is a
first-order (with counting) reduction from the problem of deciding isomorphism of multi-
pedes to the problem of deciding solvability of linear systems over GF,. The latter problem
can be defined in FOR; by Theorem [4.12} Hence, we get the following result.

Theorem 5.8 (Multipede isomorphism in FOR;). There is a sentence ¢y € FOR; such that
for all structures M = MjUM,, where M, and M, are multipedes, it holds that M = ¢y if and
only if M) = M. O]
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5.2 Descriptive complexity

In descriptive complexity theory, it is known that extensions of first-order logic with vari-
ous fixed-point operators capture different complexity classes on the class of finite ordered
structures. For instance, on ordered structures FO+TC captures non-deterministic logspace
(NL) while IFP captures PTIME. In this section we show such a natural correspondence for
first-order rank logics on ordered structures, by proving that FORg captures the complexity
class L and that for prime p, FOR,, captures the complexity class MOD,L. While these
classes are perhaps not as well known as some of the more established complexity classes
(and we do give the formal definition of each one later), they do correspond to natural lev-
els of complexity and have been extensively studied in the literature over the past couple of
decades. In particular, MOD,L is better known under the name “parity logspace”, denoted
by ®L, and L equals C_LH, the exact logspace counting hierarchy.

Put in the context of other known capturing statements, these results give us the following
picture of logspace descriptive complexity on ordered structures. Here, the capturing result
for FOC is from Etessami [47], where ThC® is the class of languages that can be decided by
Boolean circuits with constant depth and polynomial size, containing only unbounded-fanin
AND gates, OR gates, and threshold gates [59)]. Both the capturing results for FO+DTC
and FO+TC are from Immerman [43]. The inclusion NL ¢ LEL is from [I]. As evident
from the diagram, relations between many of the logspace complexity classes are not fully
understood. In particular, it is an open problem whether NL and @L are directly comparable,
although there is some evidence that NL ¢ @L (see e.g. Allender [3]). Inlight of our capturing
results, it is now conceivable that this important open problem can be settled by purely logical
methods.

MOD,L  FOR,

oL FOR,
2]
ThC® L NL FO+TC
|
FOC  FO+DTC Lok FORg

Figure 5.3: Descriptive complexity of logarithmic space classes. Complexity classes are typed in black,
logics in grey. Arrows between complexity classes indicate inclusion and dotted lines between logics
and complexity classes denote capturing on ordered structures.

Before we describe the actual capturing results, we first review some notions from both de-
scriptive and computational complexity in the next two sections. Throughout, all structures
are assumed to be finite.

5.2.1 Encoding ordered structures as strings

For a vocabulary 7 with <e 7, we call a 7-structure A an ordered structure if A interprets <
as a total linear order of its universe. We identify the linearly ordered universe of A with
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[0,]|A] — 1] ¢ Ny. An ordered 7-structure A can be encoded as a word over X := {0,1} in
a canonical way as follows. This encoding is similar to the encoding we described in
except now we consider the built-in ordering of the structure.

Assume 7 = {Ry,...,Rs,c1,..., ¢}, where the R; are relation symbols and the ¢; are
constants, and let U(A) = {0,...,n —1}. For each k-ary relation symbol R € 7, the relation
RA is encoded by an #n*-bit string enc(RA) where the j-th bit of enc(R?) is 1 if and only if
d € R for the k-tuple d for which ¥ 1a;n’ = j. Constants can be encoded similarly, by
viewing each constant as a unary relation containing exactly one element. Putting this all
together, we write enc(A) for the canonical encoding of A defined by

enc(A) := 0" - enc(R™)-—-enc(R*) -enc(cf) - enc(c),

where a - b denotes the concatenation of strings a and b. For further details, see e.g. Ebbing-
haus and Flum [23]] or Libkin [52]]. It is not hard to see that there is a deterministic logarithmic-
space algorithm, depending only on 7, that decides whether a given string X* is a valid en-
coding of a 7-structure.

If IC is a class of ordered 7-structures, then we say that a Turing machine M decides K if
for any ordered -structure A,

accepts ifA e/,

M(enc(A)) { rejects  if A ¢ K.

Here we assume that the input alphabet of M contains . Since it can be decided in logarith-
mic space whether a given string in X* is a valid encoding of a 7-structure, M can be turned
into a machine that decides {enc(A) | A € K} ¢ {0,1}*, assuming M is not restricted to
use less than logarithmic amount of work space. For a complexity class C we write K € C to
mean {enc(A) |A e} eC.

Definition 5.9 (Capturing complexity on ordered structures). Given a complexity class C,
we say that a logic L captures C on ordered structures if for any vocabulary 7 with <e 7 and
any class /C of ordered 7-structures, K € C if and only if there is a sentence ¢x of L[ 7] that
defines K. |

5.2.2 Logspace-bounded Turing machines

All the Turing machines we consider in this and the following sections are non-deterministic
logspace machines that use X as both their input and work tape alphabet. Let M be one such
machine, with space bound d - log n, where d € N. Given a string x € X, we write Gy, for
the configuration graph of M on input x. Recall that G, , is the directed graph whose vertices
are all possible configurations of M with x on the input tape and the work tape having at most
d-log(|x|) symbols, and there is an edge from configuration c; to configuration c, if and only
if the machine M can make the transition from c; to c; in one step. Since each configuration
can be described using at most e - log|x| bits, where e > d is a constant depending only
on d and M, it can be seen that the size of the graph Gy, (i.e. the number of possible
configurations of M on input x) is bounded above by py(|x|), where py; is a polynomial
depending only on M and d.

Also note that Gy, can generally be assumed to be free of cycles; if it is not, then we
can consider instead the configuration graph of the Turing machine M’ obtained from M by
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keeping a time mark on the work tape that is increased by 1 at every transition. The maxi-
mum time mark required is simply the number of possible configurations of M on input x,
and since this number is at most pyr(|x|), it is clear that the machine M’ also requires only
logarithmic workspace.

Finally, we can also assume, without loss of generality, that M has only one accepting
configuration; that is, a configuration in the accepting state of M. Otherwise, if M on input
x has more than one accepting configuration, then we consider the machine M’ obtained
from M by (a) adding a new state sy, (b) making sy the accepting state of M’ and (c)
modifying the transition table of M so that whenever the machine reaches state sacc, it will
clear the work tape, move the work tape and input tape heads to the initial position and go to
the new accepting state s3 .. This ensures that the corresponding configuration is the unique
accept configuration of M’ on input x.

Write Ograph 1= {E} for the signature of graphs, where E is a binary relation symbol. Ebbing-
haus and Flum [23]] show that for each vocabulary 7 containing the binary relation symbol <,
there isan FO+DTC interpretation @ of dgrapn in 7 for which it holds that for any 7-structure
A, ®(A) is the configuration graph of M on input enc(A). Here there is a fixed encoding of
the configurations of M on input enc(A) by e-tuples of elements from A, where e > d is a
constant depending only on d and M, as above. A close look at the proof of this statement
illustrates that a similar interpretation can also be defined using formulae of FOC without
any recursion, as we state more formally below.

Lemma 5.10 (Configuration graph in FOC). Let M be a non-deterministic logarithmic-space
Turing machine with q states and a space bound d -log n, where d € N. Then there is a constant
e, depending only on M and d, and FOC-formulae Xstart(X), Xaccept(X), and xsucc(%, y) such
that for all ordered t-structures A with |A| > max{d -log|A|,q} and d € U(A)¢,

o (A, d) & Xstart(X) ifand only if d encodes the start configuration of M on input enc(A);

* (A, d) F Xaccept(X) if and only if d encodes the accepting configuration of M on input
enc(A); and

o AFE Ysucc(d, b) if and only if G and b encode valid configurations of M on input enc(A)
and b is a successor configuration of a.

Here, X and y are assumed to be e-tuples of distinct variables.

Sketch proof. The formulae ystart(X) and yaccept(X) can be expressed in first-order logic,
by Lemma 7.3.7 in [23]. That same lemma shows that the formula ysucc(%, y) can be ex-
pressed in FO+DTC over vocabulary 7. A close look at the proof of that lemma shows
that the dtc-operator is required only for defining formulae ¢, (x, y, z), ¢.(x, ¥, 2), p2(x, )
and Plog(universe) (x) (see Lemma 7.3.11 in [23]), for which it holds that for any ordered 7-
structure A with U(A) ={0,...,n—1} and any a,b,c € U(A),

(Aya,b,c)Epr=a+b=c,
(Aya,b,c)Ep. =a-b=c,
(A,a,b) =9, = 2°=b, and
(A,a) E Plog(universe) < 4 = log|Al.
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Clearly, the formulae ¢, (x, y,z) and ¢.(x, y, z) can be defined in FOC by mapping the el-
ements of A into the number sort. From the proof of Theorem 6.12 in [52], the formula
¢2(x, y) is expressible over ordered structures in FO(+, ), first-order logic with addition
and multiplication over the domain elements. Finally, ¢log(universe)(x) can be expressed
with a simple application of ¢,(x, y), as in the proof of Lemma 73.11 in [23]. O]

For some of the complexity classes we define later, we need to consider Turing machines
with access to an oracle. Loosely speaking, an oracle machine is a Turing machine which
may pose questions (or queries) to a function f : X* — X*, called the oracle. Apart from an
input tape and a work tape, an oracle machine has an additional oracle tape which it uses to
communicate with the oracle. To do that, the machine writes a query string x to the oracle
tape and then tells the oracle to execute. In a single step, the oracle computes its function,
erases the input, and writes its output f(x) to the oracle tape. We write M/ to denote the
oracle Turing machine M with access to the oracle f. Frequently, we consider oracles that
are the characteristic function y, of some language A; in that case we write M* to denote
the machine M with access to the oracle ya.

To simulate oracle access for logspace-bounded machines, we follow the Ruzzo-Simon-
Tompa oracle access mechanism described in [2] and [1] (see also Ruzzo et al. [61] for the
original definitions). According to this mechanism, a logspace-bounded machine M is re-
quired to write its queries on the oracle tape in a deterministic manner. The number of
possible configurations before the machine starts writing on the oracle tape is at most poly-
nomial. It follows that for any given input string x, the number of queries M can submit to
its oracle is at most polynomial in the size of x. Moreover, all these queries can be written
in sequence on the oracle tape even before the machine starts reading its input (knowing
only the size of the input). By pre-computing all oracle queries in this way, it can be ensured
that M does not have to query its oracle for the remainder of the computation. Thus, in this
context, an oracle-access machine M can be seen as an ordinary logspace-bounded machine
with an additional polynomial-size “advise string” given as input.

Finally, we write ||[M(x)| to denote the number of accepting computation paths of a non-
deterministic machine M with input string x. The same notation will be used for machines
with oracle access.

5.2.3 FOR, captures MOD,L on ordered structures

In [11], Buntrock et al. investigated the logspace analogues of polynomial-time counting
classes. In particular, they showed that many of the standard problems of linear algebra are
complete for the logspace modulo-counting classes MODL, which are defined as follows.

Definition 5.11 (Complexity class MOD;L). Let k € N. A language L ¢ X* belongs to
MOD,L if there is a non-deterministic logspace machine M, such that for every x € X*:
x € Lifand only if [M(x)| # 0 mod k. |

Remark. Note that MOD,L is better known under the name “parity logspace”, usually de-
noted by @L.

Theorem 5.12. Let p be prime. Then FOR, captures MOD,L on ordered structures.



5.2. Descriptive complexity 89

The proof of this theorem consists of two parts. Firstly, we show that for any sentence ¢ €
FOR,, the class of finite ordered models of ¢ can be decided in MOD,L. More specifi-
cally, we show that for any ¢ there is a non-deterministic logspace machine M, such that
for any structure A, |M,(enc(A))| # 0mod p if and only if A & ¢. Secondly, given a
non-deterministic logspace machine M deciding a class of finite structures € MOD,L, we
construct a sentence ¢ that holds in a structure A if and only if A € K (equivalently, if and
only if [M(enc(A))| £ 0 mod p).

For the first part, assume that 7 is a vocabulary with <e 7, and that ¢ is a FOR,[7]-
sentence. In order to deal with rank operators occurring in ¢, we need two results on MOD , L-
complexity. The first one says that the rank of a matrix over GF, can be verified in MOD, L.

Lemma 5.13 (Buntrock et al. [11]). Let p be prime. Then the problem which takes as input an
integer r € No and a matrix A € GFp"™" and decides whether rank A = r is in MOD, L. O

The second result states that non-deterministic logspace machines deciding languages in
MOD,L making oracle queries to a MOD,L problem can be simulated in MOD,L without
oracle queries.

Lemma 5.14 (Hertrampf et al. [39]). Let p be prime. Then MODPLMODPL = MOD,L. ]

It is left to show that the language
Ly :={enc(A)|Acfin[r]and A E ¢}

is in MOD, L by means of a non-deterministic logspace machine M, The proof is by induc-
tion on the structure of FOR, number terms and formulae. That is, we show that

+ for each FOR,-formula 6(X) of vocabulary 7 with k free variables, the language
Loz = {enc(A,d) | A € fin[7],d € U(A)" and (A, d) & 6(%)}

is in MOD,L by means of a non-deterministic logspace machine My z), where we

write enc(A, @) for the string obtained by extending enc(A) with an |A|*-bit string
representing the tuple of elements d; and

« for any number term #(X) of FOR,[1], there is a deterministic logspace machine
M, (z), with access to MODL-oracles, that when given as input a string enc(A, d),

accepts and halts with the integer #(%)(*% on the work tape.

Since existential quantifiers can be expressed using rank operators, it is enough to show the
following cases.

« Atomic formulae Rx and x = y can be decided deterministically by lookup in enc(A)
on the input tape. Similarly for formulae involving constant symbols in .

« Computation of the number constants 0% and 14 can be carried out in constant time
by writing the integers zero or one on the work tape, respectively.

« Addition and multiplication of number terms is carried out deterministically in logspace.
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« Given number terms s and ¢, formulae 6 = s = t and 6 = s < t are decided determinis-
tically from the values computed for s* and t* by machines M, and M;, respectively.

+ Now consider a formula 6. If 6 = -y, then My makes an oracle query to L,, and accepts
if and only if the oracle rejects the input. If 6 = y; A y,, then My makes oracle queries
to Ly, and Ly, and accepts if both queries succeed, and rejects otherwise. In both cases
My is a deterministic logspace-bounded machine with access to MOD,L-oracles. As
L € MOD,L for any prime p, the language Ly € LMOP#* decided by My is in MOD,L,
by Lemma5.14]

+ Finally, consider a number term 5 = rk,(%, ).y, with k = min{|x], [ y[|}. A ma-
chine computing # proceeds by checking for every integer r with 0 < r < |A|* if
rk, (X, y).y = r by making oracle queries to the MOD,L-language from Lemma
Instead of querying its input tape for matrix entries y(d, b), M » computes y(d, b) de-
terministically if y is a term or makes oracle queries to L, with input enc(A, d b)ify
is a formula. Since r < ||A|¥, all possible rank values can be written down in space
logarithmic in the size of A. It follows that at most polynomially many oracle queries
have to be made by M,,. Once all these oracle queries have been processed, the deter-
ministic oracle machine M, goes through the list to find the right rank value and then
writes it down on its work tape, as required.

For any FOR,-sentence ¢ there is therefore, by repeatedly applying Lemma a non-
deterministic logspace machine M, such that for any structure A, | M, (enc(A))| # 0 mod p
ifand only if A & ¢. Hence, L, is in MOD, L.

For the other part, consider a non-deterministic machine M with space bound d -log » that
decides a class of 7-structures K € MOD pL. As noted before, we can assume that M has only
one accepting configuration. We construct a formula ¢, that defines . In the following,
we restrict ourselves to structures A so that |A|| > N := max{d -log|A|, q} where q is the
number of states of M. For those structures B whose size is less than N we can write down
a fixed formula which checks whether enc(B) € K by comparing B with a finite number of
small structures that belong to K.

Given a 7-structure A, write G, for the configuration graph of M on inputenc(A). Let
e > d be a constant, depending only on M, such that all configurations of M may be encoded
by e-tuples of elements from A, as discussed earlier. If s and ¢ denote the unique start and
accept configurations of M on input enc(A), respectively, then it can be seen that A € IC if
and only if the number of paths from s to ¢ in Gy,4 is # 0 mod p. By Lemmal5.10} there is a
formula ysucc(X, y) of FOC (and hence of FOR,) which defines over any 7-structure A the
configuration graph Gy 4 of M on input enc(A), where x and y are e-tuples of variables. In
other words, ysucc(%, )™ defines the adjacency matrix A of Gasa. Let I denote the identity
matrix of the same dimension as A. Then I — A is definable in FOR,, by a term #(X, ), and
the term

n(%y) = (_‘Xaccept(’?) A _'Xstart(y)) n(X,y)
defines I — A with row t and column s set to 0. Here, yaccept(X) and ystart() are obtained

from Lemmal5.10| The formula e(%, y) = (¥ = y) A = xstart(¥) defines the identity matrix of
the same dimension as A with row s set to 0. Let

oM =1k, (X, y).e = rk, (X, ¥).n".
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The following completes the proof of Theorem [5.12

Lemma 5.15. For any ordered t-structure A with |A| > max{d -log|A||, g}, A E @u if and
only if A e K.

Proof. As G4 is cycle-free and has n° vertices, there is no path of length larger than n¢ =: m,
hence A™ = 0. Here, e is the number of variables needed to encode configurations of M
over A, as above. Thus, I — A is non-singular over GF,, with the inverse explicitly given by
(I-A)":=I+A+A*+...+ A", where all arithmetic is over GF . To see this, note that

(I-A)(I+A+A*+.. .+ A"
=(T+A+ A%+ + A" (A+ A%+ + A" A™)
—(T+A+A*+ .. +A" D) - (A+ A%+ ...+ A"+ 0)
:I’

as required. Notice that for k € Ny, the (i, j)-th entry of AF equals the number of paths
modulo p of length k from i to jin Gya. Thus, (I — A)™! is the matrix of the total numbers
of paths modulo p. Recall that s and t denote the start and accept configuration, respectively.
Then A € K if and only if (I - A)'(s, t) # 0 over GF .

It can be shown [42] that for any invertible matrix B, the entries bi_j1 of its inverse B! are
given by

bi} = (-1)"/ det B;; / det B,

where Bj; is B with the j-th row and the i-th column deleted (this expression is known as the
adjugate rule). To check if (I — A)7!(s,t) # 0, it is therefore enough to test if (I — A) has
full rank, which is exactly what ¢ does. O

5.2.4 FORg captures L' on ordered structures

Allender and Ogihara [2] introduced the complexity class C_L (pronounced “exact logspace
counting”) to characterise the complexity of the class of singular matrices. The following is
one of several equivalent ways of defining this class.

Definition 5.16 (Complexity class C_L). A language L € X* belongs to C_L if there is a non-
deterministic logspace machine M, such that for every x € £*: x € L if and only if M on
input x has exactly the same number of accepting and rejecting paths. |

Allender and Ogihara [2] also consider LL, the class of languages decided by a determin-
istic logspace-bounded machine with access to an C_L oracle. In this section we prove the
following theorem.

LC:L

Theorem 5.17. FORq captures on ordered structures.

The proof of this theorem is quite similar to the proof of Theorem First we recall a
couple of results on C_L computation. The first result concerns the exact logspace counting
hierarchy C_.LH, which is defined as follows. Define C_.LH; to be C_L and let C_.LH;.; be the
class of languages L for which there is a logspace-bounded non-deterministic oracle Turing
machine M and a language A € C_.LH; such that for any string x € X*: x € L if and only if
M* on input x has the same number of accepting and rejecting computation paths. Finally,
set C.LH := UJ; C.LH;. Allender and Ogihara [2]] show that the exact counting logspace
hierarchy collapses to L%,
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Lemma 5.18 (Allender and Ogihara [2]). C_L%! = LS Hence C_LH = L&, O

The second result that we need says that the rank of matrices with entries from the field of
rational numbers can be verified in C_L.

Lemma 5.19 (Allender and Ogihara [2]]). There is a non-deterministic logspace machine M 3.
for which it holds that when given as input an integer r € No and a matrix A € Q™"", M) has
exactly the same number of accepting and rejecting paths if and only if rank A = r. O]

We can now show that formulae of FORg can be evaluated in LS on ordered structures.

Lemma 5.20 (FORq € LY. Let T be a vocabulary containing the symbol <. For every sen-
tence ¢ € FORq of vocabulary t the class of finite ordered models of ¢ can be decided in L-".

Proof. Assume 7 is a vocabulary with <e Tand let ¢ be a FORg-sentence of vocabulary 7. We
show that there is a deterministic logspace-bounded machine M and a language B € C_L,
such that for every ordered 7-structure A: A F ¢ if and only if M? accepts enc(A). As
discussed in Theorem it can be shown by induction that all logical and arithmetical
operations other than application of rank operators can be evaluated in L>-L. All that remains
is to show that rank operators of the form rkg (X, 7).(@n, ¢4, ¥, t) can be evaluated in L-L.
But by Lemma5.19] and an argument similar to the one given in the proof of Theorem 5.12}
this should be clear. O

We define PATH-DIFFERENCE to be the function problem that takes as input a directed acyclic
graph G = (V,E) and vertices s, t1,s2, £ € V and computes the value of #Pathg(sy, 1) —
#Pathg (s,, t7), where #Pathg (u, v) is the number of paths from vertex u € V to vertexv € V.
Toda [63] shows that the problem PATH-DIFFERENCE can be logspace many-to-one reduced
to the problem of computing the determinant of an (0, 1)-integer matrix (although his state-
ment of the path difference problem is slightly more generic). The following lemma shows
that this reduction can in fact be turned into a first-order reduction.

Lemma 5.21. PATH-DIFFERENCE Sfo ZERO-ONE-DET.

Proof. Let G = (V,E) be a directed acyclic graph and consider vertices sy, t1,52,¢, € V.
Let G; = (W, E1) and G, = (V;, Ey) be two disjoint copies of G, and write xy, y; € V; and
X2, ¥2 € V; to denote the vertices corresponding to s;, t; and sy, ¢, in each of the two copies
of G, respectively. We construct a graph H from G; and G as follows.

o The vertex set of H contains all vertices in V; and V5. In addition, for each edge e =
(u,v) in Gy or G,, we add a new vertex w, to H. Finally, we add two special vertices a
and b.

o Foreachedgee = (u,v) in Gy or G, we add the two directed edges (u, w, ) and (w,, v)
« We add the following edges to the two special vertices a and b:

- a—->x, ) —>bb-a,and

- a— X3, Y2 a.
« Finally, we add self-loops to all vertices except a.

Write B for the adjacency matrix of H. Clearly, H (and hence B) is first-order definable over
G.
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Our claim is now that the number #Pathg (s, t;) — #Pathg(sy, £7) is equal to the determi-
nant of the matrix B over Z. For completeness, we recall the proof of this claim from [63].
Consider an n x n matrix A = (a;;). The determinant of A is given by

det(4) = 7 sgn(0) [Taioqi),

oeSym(n)

where the sum is taken over the symmetric group Sym(n) of all permutations of [n] :=
{1,...,n}. Here sgn(o) denotes the sign of the permutation o, defined by sgn(¢) := (-1)™
where m is the number of transpositions of pairs of elements that must be composed to build
up the permutation o. In particular, if ¢ € Sym(n) is a cyclic permutation then sgn(o) =1
if n is odd and sgn(o) = -1 otherwise. In general, when ¢ is not necessarily cyclic, we can
decompose o into a product of cyclic permutations. It can be seen that this cycle decompo-
sition of o, when interpreted as a graph on vertices [#], induces a partition of the vertex set
into disjoint cycles.

The matrix A can be seen as a weighted directed graph G4 on n vertices, where the weight
of an edge from i to jis a;;. Recall thata cycle cover of G is a set of cycles which are subgraphs
of G4 and which collectively contain all vertices of G4. Here we consider only cycle covers
where the cycles are disjoint. Clearly, each cycle cover of A corresponds to a permutation
o of [n], where the partition of vertices into cycles corresponds to the cycle decomposition
of 0. It is noted by Toda [63] that each cycle cover of A corresponds to a permutation o
whose additive term in det(A) is non-zero (clearly, since each vertex in the cycle cover must
have an edge to at least one other vertex in the cycle). Similarly, it can be shown that every
permutation in Sym(n) whose additive term in det(A) is non-zero corresponds to a cycle
cover of A.

Now consider the graph H constructed above, with m x m adjacency matrix B = (b;;), where
m > n is the number of vertices in H. From the construction of H it can be seen that each
cycle cover of H consists of (a) one large cycle that includes the special vertex a and (b)
a number of self-loops, one for each vertex not on the big cycle. It can be seen from the
construction of H that the big cycle can take only one of two forms:

(Cl1) either it contains the edge a — xj, in which case it must include a path from x; to y;
and come back to a via the path y; - b — a; or

(C2) it contains the edge a — x3, in which case it must include a path from x; to y, and
come back to a via the path y, — a.

Hence, we see that the number of cycle covers containing (C1) is the same as the number of
distinct paths in G; from x; to yj, and likewise that the number of cycle covers containing
(C2) is the same as the number of distinct paths in G, from x; to y,. It is clear that any path
from either x; to y; or from x; to y, in H must be of even length, where by length of a path we
mean the number of edges it contains. This is due to the intermediate vertices w,, inserted
in between two endpoints of an edge in G; or G,. Consequently, it can be seen that the two
big cycles (Cl) and (C2) described above must have odd and even length, respectively.

Now consider all the permutations in Sym () whose additive term in the expression for
det(B) is non-zero. Divide these permutations into two sets: Py, the set of all permutations
whose corresponding cycle cover on H contains the cycle (Cl), and P, the set of all permu-
tations whose corresponding cycle cover on H contains the cycle (C2). By the above these
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two sets are disjoint. Also, we see that sgn(¢) = 1forall 0 € P, and sgn(o) = —1forall o € P,.
Now we can write

det(B)= > sgn(0) [T biocy

oeSym(m)
= ( Z H bia(i)) - ( Z H bio(i))
oeP i oeP, i
= [Py = [P,

where the last equality comes from the fact that B is a (0, 1)-matrix. It follows that det(B) =
#Pathg, (x1, y1) — #Pathg, (x2, y2). Since #Pathg, (x;, y;) = #Pathg(s;, t;) for i € {1,2}, the
lemma now follows. 0

Lemma 5.22 (C_L € FORq). Let K € C_L be a class of finite 1-structures decided by a non-
deterministic logspace-bounded machine M. Then there is a sentence ¢ € FORg|[ 7] such that
for any t-structure A: A = @y if and only if A € K.

Proof. Consider a non-deterministic logspace-bounded machine M that decides a class of
T-structures JC € C_L. That is, for any 7-structure A, A € K if and only if M on input enc(A)
has the same number of accepting and rejecting computation paths. We show that there is a
formula of FORg[ 7] that defines K.

As in the proof of Theorem let ysucc(%, y) be the formula that defines over a given
T-structure A the adjacency matrix of the configuration graph G := Gy;4 of M on input
enc(A). We can assume, as before, that M on input enc(A) has only one accepting config-
uration and one rejecting configuration. Write sjpjt,facc and fr.j for the start configuration,
accepting configuration and rejecting configuration of G, respectively. By the above, we know
that A € K if and only if the number D := #Pathg (sinit, facc) — #Pathg (sinit» frej) is zero.

By Lemmal5.21} there is a first-order reduction from the problem of deciding if D is zero
to the problem of determining whether a square integer matrix is singular over Q (that is,
has determinant zero). This, in turn, can be first-order reduced to the problem of checking
whether a square matrix has full rank over Q. Since the logic FOR( is closed under first-
order reductions, the statement of the lemma now follows. O

Proof of Theorem The proof of this theorem now follows directly from Lemma and
by combining Lemma with the fact that queries in L can be defined in first-order logic
on ordered structures. O



Chapter 6

Ehrenfeucht-Fraissé games for rank
logics

In order to analyse the expressive power of rank logics over finite structures, it is important
to develop methods for proving non-definability. In this context, the restriction to finite
structures means that many of the classical tools of model theory, such as the compactness
theorem, are not available. Instead, we consider extensions of pebble games—variations of
Ehrenfeucht-Fraissé games for first-order logic—which have assumed a central role in the
study of both infinitary and fixed-point logics.

A pebble game is a two-player model-comparison game where each player has a finite
number of tokens (‘pebbles’) for placing on the game board. Intuitively, the finite collec-
tion of tokens each player is equipped with corresponds with the finite supply of variables
that can be used to construct sentences of the corresponding logic. Pebble games were es-
sentially described by Barwise [5] though versions were later independently presented by
Immerman [44] and Poizat [60]. The k-pebble game can be shown to characterise defin-
ability in k-variable infinitary logic (£¥). This correspondence gives a purely combinatorial
game method for proving inexpressibility results for £¥ in general and IFP in particular. Im-
merman and Lander [46] and Hella [37] later introduced separate versions of the k-pebble
game for analysing the expressiveness of k-variable infinitary counting logic (C*) over finite
models.

In this chapter we give a game characterisation of finite-variable infinitary logic with
operators for defining matrix rank (Rg;m). This gives us a game-based method for proving
lower bounds (inexpressibility results) for FOR and IFPR. The game protocol that we intro-
duce is based on partitioning the game board into a number of disjoint regions, according
to some linear-algebraic criteria, which then limits the possible placement of pebbles on the
board. This method of partitioning the game board turns out to be quite flexible and can
be used to give a game description of finite-variable infinitary logic equipped with any set of
generalised quantifiers. To give some examples of this approach, we will conclude the chapter
by describing new partition-based games suitable for £ and C*.

The remainder of this chapter is divided into three main sections. In §6.1lwe give an overview
of standard pebble games and some of their variations (counting and bijection games) and
describe their relationship to fixed-point and infinitary logics with and without counting.
In §6.2) we introduce a new model-comparison game, based on set partitions, that charac-
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terises expressivity in logics that can define matrix rank. Finally, in §6.3|we indicate how the
partition-based design can be used to obtain games that characterise definability in £¥(Q)
for any set of generalised quantifiers Q. To illustrate this idea, we finish our discussion by
showing how new games for infinitary logic (with and without counting) can be obtained by
putting certain restrictions on the protocol of this general partition game.

6.1 Pebble games for L£* and C*

Combinatorial games in model theory invariably involve comparing a pair of game positions
over one or more structures. In order to formally compare game positions, we need the
following definition.

Definition 6.1 (Partial isomorphism). Let A and B be structures over the same vocabulary
7. A partial map f : U(A) — U(B) is a partial isomorphism from A to B if

o f isinjective;
o for every relation symbol R € 7 of arity k and all ay, ..., a; € U(A):

(611,. .. ,ak) € RA <~ (f(al),. . .,f(ak)) € RB;

« for every constant symbol ¢ € 7: ¢* € dom(f) and f(c?) = cB,
where we write dom( f) € U(A) for the domain of f. |

Definability in k-variable infinitary logic is elegantly characterised in terms of two-player
games based on a game style originally developed by Ehrenfeucht and Fraissé [27,24]. These
games were essentially given by Barwise [5] though versions were also independently pre-
sented by Immerman [44] and Poizat [60]]. The game board of the k-pebble game consists of
two structures A and B over the same vocabulary and k pebbles for each of the two struc-
tures, labelled 1, .. ., k. The game has two players, Spoiler and Duplicator. At each round of
the game, the following takes place.

1. Spoiler picks up a pebble in one of the structures (either an unused pebble or one that
is already on the board) and places it on an element of the corresponding structure.
For instance he' might take the pebble labelled by i in B and place it on an element of
B.

2. Duplicator must respond by placing the matching pebble in the opposite structure. In
the above example, she must place the pebble labelled by i on an element of A.

Assume at the end of the round that r pebbles have been placed and let {(a;,b;) | 1< i <
r} € U(A) x U(B) denote the r pairs of pebbled elements, such that for each i the label of
the pebble on element a; is the same as the label of the pebble on element b;. If the partial
map f : U(A) - U(B) given by

f={(ai,b;)|1<i<r}u{(c* c®)|ceraconstant}

"By convention, Spoiler is male and Duplicator female.



6.1. Pebble games for L* and C* 97

is not a partial isomorphism, then Spoiler has won the game; otherwise it can continue for
another round. We say that Duplicator has a winning strategy in the k-pebble game if she
can play the game forever, maintaining a partial isomorphism at the end of each round.

We also consider the situation where the game starts with some of the pebbles initially
placed on the game board. Formally, we refer to a placement of pebbles over one of the
structures as a position. If d and b are r-tuples of elements from U(A) and U(B) respectively,
r < k, then the game starting with positions (A, @) and (B, b) is played as above, except that
pebbles 1,...,rin A are initially placed on the elements ay, ..., a, of d and pebbles1,...,r
in B are initially placed on the elements by, ..., b, of b. We will focus on this variant of the
game in the following, with the understanding that by taking r = 0 we recover the situation
where all the pebbles are initially off the game board. The result that links the k-pebble game
with definability in £* is the following.

Theorem 6.2. Duplicator has a winning strategy in the k-pebble game starting with positions
(A,d) and (B, b) ifand only if (A, @) =£* (B, b). O

One direction of the above is easy to show. That is, given a formula ¢ with k variables that
distinguishes the pair (A, @), (B, b), it is straightforward to construct a finite-round winning
strategy for Spoiler in the k-pebble game. This shows that the equivalence defined by the
game is no coarser than that defined by the logic. The other direction, which would show
that the equivalence is also no finer, requires a more careful argument; for details, see e.g.
Ebbinghaus and Flum [23]].

While the k-pebble game gives a complete characterisation of the infinitary logic £, it also
proves useful for analysing the expressive power of fixed-point logic. This is illustrated by
Theorem[2.13] which states that any sentence of IFP is equivalent to one of £¢. In particular,
for each sentence ¢ of IFP there is a k such that the models of ¢ are invariant under the
equivalence relation =" Hence we obtain the following game-based method for proving
non-definability of queries in IFP:

To show that a property P of finite structures is not definable in IFP, it suffices
to show that for each k < w there is a pair of structures A, and By for which it
holds that

1. Ay has property P but By does not; and

2. Duplicator has a winning strategy in the k-pebble game on Ay and B. m
We now turn our attention to infinitary logic with counting quantifiers. The relations =c*
were first given a game characterisation by Immerman and Lander [46]]. This is a pebble
game as before, played on a pair of structures A and B, each with k pebbles labelled 1, ... ., k.
In each round of the k-pebble cardinality game the following takes place:

1. Spoiler chooses a pebble label i € [k] and picks a subset of the universe of one of the
two structures (say X € U(B)).

2. Duplicator must respond by choosing a subset of the universe of the other structure
(say Y ¢ U(A)) of the same cardinality.
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3. Spoiler then places the pebble with label i on an element of Y and Duplicator must
respond by placing the matching pebble in the opposite structure on an element of X.

This completes one round in the game. If, at any stage, the partial map from A to B defined
by the pebbled positions (plus constants) is not a partial isomorphism, then Spoiler has won
the game. Otherwise it can continue for another round. We say that Duplicator has a win-
ning strategy in the game on A and B if she can ensure that it can be played forever. We
also consider the case when the game starts with some of the pebbles initially placed on ele-
ments of the two structures, just like before. Immerman and Lander [46] prove the following
equivalence.

Theorem 6.3. Duplicator has a winning strategy in the k-pebble cardinality game starting with
positions (A, @) and (B, b) if and only if (A, d) =c* (B,b). O
An alternative game characterisation of the equivalence =" was given by Hella [37], who
describes what we call a k-pebble bijection game. As before, the game is played on structures
A and B, each with k pebbles labelled 1,..., k, by Spoiler and Duplicator. If [A|| # ||B|,
Spoiler wins the game immediately. Otherwise, each round of the game proceeds as follows:

1. Spoiler picks up a pebble from A and the matching pebble from B.
2. Duplicator has to respond by choosing a bijection 4 : U(A) - U(B).

3. Spoiler then places the pebble chosen from A on some element a € U(A) and places
the matching pebble from B on h(a).

This completes one round in the game. If, after this round, the partial map from A to B
defined by the pebbled positions (plus constants) is not a partial isomorphism, then Spoiler
has won the game. Otherwise it can continue for another round.

Observe that in any winning strategy for Duplicator, it is implicit that at every round in
the game, the bijection h : U(A) — U(B) has to respect the partial map defined by the
currently pebbled elements excluding the two pebbles that were just picked up by Spoiler.
That is, suppose at some round in the game that the tuples a and b describe the current
pebble positions over A and B, respectively. Then the mapping & given by Duplicator in
response to Spoiler choosing pebbles with label i must satisfy (a;) = b; for all j # i. To see
this, suppose instead that there is some j € [k], j # i, such that h(a;) # b;. Then Spoiler
can immediately win the game in response to this choice of bijection, by placing the pebble
labelled i on the element a; and the matching pebble in B on h(a;). The resulting game
positions will have a; = a; but b; # b;. Hence, the mapping A — B defined by the pebbled
elements is not a partial isomorphism, as it violates equality.

At first glance, compared to the Immerman-Lander cardinality game, the bijection game
appears to be weighted in favour of Spoiler, as Duplicator has to come up with a response to
every subset that Spoiler might possibly choose. However, as Hella shows, Duplicator still
has a winning strategy as long as A and B are C¥-equivalent. Thus the game has the same
discriminating power as the Immerman-Lander game. However, it is often easier to express
winning strategies in Hella’s game, which is useful when presenting non-trivial game proofs.
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6.2 Pebble game for Ré‘,;m

In order to delimit the expressive power of rank logics, we would like to have a character-
isation of the logics in terms of suitable pebble games. One way to define a pebble game

that characterises equivalence in =Rpm is to extend the idea behind the Immerman-Lander
counting game. For instance, for the case of quantifiers rk3' of arity two, one could define
a game played between Spoiler and Duplicator using k pairs of pebbles as follows. At each
round, Spoiler chooses two pebble labels i and j. He then picks up a set of pairs of elements
from the universe of one of the structures (say Spoiler chooses X ¢ U(B) x U(B)) and Du-
plicator must respond with a similar set from the other structure (say Y ¢ U(A) x U(A))
such that the (0, 1)-matrices induced by these sets have the same rank over GF,. Spoiler then
places the two pebbles labelled i and j in A on an element of Y and Duplicator must respond
by placing the matching pebbles in B on an element of X. It is possible to show that if Dupli-
cator has a winning strategy in this game, then the two structures cannot be distinguished by
any formula of Rlz‘;m of arity at most two. But, for a converse, it seems that one has to restrict
Spoiler to play on definable sets, which seems a rather unsatisfactory solution.

Another possibility to consider is whether the Hella bijection games can be modified,
perhaps by replacing bijections with invertible linear maps. This seems natural, considering
that these maps are exactly the ones that preserve dimension of vector spaces, just as bijec-
tions preserve cardinality of sets. It is straightforward to show that a winning strategy for
Duplicator in such a game is sufficient to ensure that the underlying positions cannot be
distinguished in infinitary rank logic, but again it is not clear that this is necessary.

In this section we describe a game design which is not based on either choosing arbitrary
sets or picking invertible linear maps. Instead, the pebble games we consider are based on
partitioning the game board into a number of disjoint regions, according to some linear-
algebraic criteria, which then limits the possible placement of pebbles on the board. It turns

out that this approach gives a complete characterisation of =R that is not itself based on
the notion of definability, which is exactly what we are aiming for.

Before describing these games, we first establish some notation. Let X be a finite set and
let P be a partition of X. That is, P is a collection of non-empty and mutually disjoint subsets
of X (called blocks) whose union is X. For x € X, we write [[x]]p to denote the P-block
containing x. For the next definition, recall that for prime p and sets I and ], we identify
functions I x J - [0, p — 1] with matrices over GF, as discussed in Chapter 4}

Definition 6.4 (Matrices defined by set partitions). Consider finite sets I and J. Let P be a
set partition of I x J and lety : P — [0, p — 1] be a map, with p prime. Then we write Mg to
denote the I x ] matrix over GF, defined for all i € I and j € ] by

MP = (i, j) = (LG )Tle) € [0, p - 1].
[ ]

In this definition, the map y can be seen as a labelling of the blocks in P with elements of
GF . This view is further illustrated with the following example.
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Example 6.5. Consider sets I = {a,b,c,d} and J = {1,2,3}. Let

P ={(a,1),(b,2),(b,3),(d,2)}

P, ={(a,3),(d,3)}

Ps = {(a,2), (b,1), (c,1)(¢,2)}

Py ={(c,3),(d, 1)}
be subsets of I x J and put P = { P}, P,, P3, P; }. The partition P can be visualised in block form
in ﬁgure below. Now take p = 5 and consider a labelling y : P — [0, 4] of the partition
P defined by P, = 0, P, — 2, P; — 1, Py — 2. Figure @ illustrates the situation where the

labelling y is applied to the partition P. Finally, by evaluating y(P) for every block P € P, we
obtain the matrix M; over GF, displayed in ﬁgure Here, we have rank(M;’ ) =3.

LEGEND 1 2 3 1 2 3 1 2 3
il a y(P) | y(Ps) | y(Px) 0 1 2
Py b y(Ps) | y(P) | y(R) 1 0 0
P c y(Ps) | y(P3) | p(Py) 1 1 2
Py d y(P) | y(P) | y(P2) 2 0 2

(a) Partition P of of I x J. (b) Thelabeling y applied (c) The matrix M} .
to P.

Definition 6.6 (k-pebble m-ary rank-partition game). Let k, m and p be positive integers
with m < k and p prime. The game board of the k-pebble m-ary rank-partition game over
GF, consists of two structures A and B of the same vocabulary, each with k pebbles labelled
1,..., k. There are two players, Spoiler and Duplicator, as before. At the beginning of each
round, Spoiler chooses two positive integers s and ¢ with s + ¢ = m. The remainder of the
round is as follows.

1. Spoiler picks up m pebbles in some order from A and the m corresponding pebbles in
the same order from B.

2. Duplicator has to respond by choosing

(a) a partition P of U(A)® x U(A)',
(b) a partition Q of U(B)* x U(B)’, with the same number of blocks as P, and
(c) abijection f: P - Q,

for which it holds that for all labellings y : P — [0, p — 1],

rank(M;)) = rank(M;zof,l). (*)
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Here the composite map y o ! : Q - [0, p — 1] denotes a labelling of Q and M;)
and M?of,l are interpreted as U(A)’ x U(A)" and U(B)® x U(B)' matrices over GF,
respectively.

3. Spoiler next picks a block P € P and places the m chosen pebbles from A on the ele-
ments of some tuple in P (in the order they were chosen earlier) and the corresponding
m pebbles from B on the elements of some tuple in f(P) (in the same order).

This completes one round in the game. If, after this exchange, the partial map from A to B
defined by the pebbled positions (in addition to constants) is not a partial isomorphism, or
if Duplicator is unable to produce the required partitions, then Spoiler has won the game;
otherwise it can continue for another round. |

A variant of the game, whereby r < k of the pebbles are initially placed on elements of each
structure, can be defined similar to before. The following theorem relates definability in Rf,;m
with a winning strategy for Duplicator in the rank-partition game.

Theorem 6.7. Duplicator has a winning strategy in the k-pebble m-ary rank-partition game
over GF, starting with positions (A, a) and (B, b) if and only if (A, d) =Rpm (B, D).

By considering initial positions (A, d) and (B, b) where d and b are empty tuples, we get the
following corollary.

Corollary 6.8. Duplicator has a winning strategy in the k-pebble m-ary rank-partition game
over GFj, on A and B if and only if A =Rpn B,

Compared with the pebble games we saw earlier, it requires much more effort to describe
a winning strategy for Duplicator in the k-pebble rank-partition game. Based only on the
pebbles chosen by Spoiler at the beginning of a round, Duplicator has to partition the two
sides of the game board in a way that both satisfies the rank condition (*) and which gives
a satisfying response to any placement of pebbles by Spoiler in the subsequent move. Note
in particular that once Duplicator has specified the partitions, she has no further input for
the remainder of that game round. Also note that it is implicit in the definition of the game
that at every round, the bijection f chosen by Duplicator has to respect the current pebble
positions, excluding the m pairs of pebbles picked up earlier by Spoiler. This follows an
argument similar to the one we gave in our discussion of the bijection game in

From the viewpoint of finite model theory, the interest in studying the infinitary logics
Rg;m is mainly to analyse the expressive power of fixed-point logics with operators for ma-

trix rank. In this context, the correspondence between =R and the k-pebble rank-partition
game gives us a game-based method for proving non-definability of queries in IFPR, ;. This
proof method is however complicated by the fact that we need to consider two additional
parameters—the prime characteristic p and the quantifier arity m—in addition to the num-
ber of variables k employed in the game:

To show that a property P of finite structures is not definable in IFPR, it suffices
to show for each k < w, m < k and prime p that there is a pair of structures
Aj.m,p and By, , for which it holds that

L Ay m,p has property P but By ,,, , does not; and
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2. Duplicator has a winning strategy in the k-pebble m-ary rank-partition
game over GF, game on Ay, , and By, .

Similarly, to show that a property P of finite structures is not definable in IFPR,,
for a prime p, it suffices to follow the procedure above with p fixed. ]

For the discussion of game strategies, we will need to formally define the quantifier rank of
infinitary rank formulae.

Definition 6.9 (Quantifier rank). The quantifier rank of a formula in Rﬁ‘,;m is an ordinal-
valued function qr that is defined inductively as follows:

¢ gr(¢@) = 0 for atomic ¢;

qr(-¢) = qr(e);
qr(V @) = qr(A @) = sup{qr(¢) | p € D};

ar(3x ¢) = qr(Vx ¢) = qr(e) +1;

qr(rk; (%, 7). (91, 9p-1)) = sup{ar(g:) [ i e [p~1]} +1. m

We also need the following lemma on definability of types in Rg;m, which is a direct corollary
of Lemma 1.33 in [58].

Lemma 6.10. Let k, m, p > 2, with p prime, and consider a vocabulary t. Then for all a €
Tp(Rf,;m; 1, k) there is a formula @, (x1, ..., x) € ng;m[‘r] such that for all (A, a) € fin[1; k]:
tp(Rf,;m;A, d)=a < AE @q[d]. O

The remainder of this section is devoted to proving Theorem Before we can give the
proof, we need to introduce some new notation. Throughout, let 7 be a vocabulary and L a
logic. To simplify our notation (and the proof), we will consider only positions (A, d) and
(B, b) with |[@| = |b| = k; that is, positions where all the pebbles are initially placed on the
board. The argument for the case when the tuples @ and b have length r < k is exactly the
same, except that one has to distinguish at every turn between game moves made during the
first k rounds and game moves in the subsequent rounds?. This has the effect of making the
proof non-uniform, without actually providing any new insight.

Definition 6.11. Let ¢(x) be a formula of L[], X a k-tuple of variables, and consider an
m-tuple i = (i1,..., i) € [k]™ of distinct integers, m < k. The tuple i can be seen to index a

?Note that it is possible to obtain a proof for |[@| = |b| = r € [k — 1] as a direct corollary of the situation
when ||d@| = |b] = k. In this case, given r-tuples d and b, one would consider the game with pebble positions d’
and b, where the k-tuple @’ is obtained from d by adding k — r copies of a; at the end of the tuple (simulating
the case when k — r + 1 pebbles are placed on element ;) and similarly for b’. Alternatively, one could consider
a game board where the structures A and B are augmented with new vertices x4 and 3, respectively, totally
disjoint from the rest of the structure. Here the idea is that a pebble placed on these special elements is to be
treated as being off-the-board. This latter approach has the benefit of working for all » < k, including r = 0,
without changing the proof in any other way. See for example Ebbinghaus and Flum [23] for an application of
this idea.
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sub-tuple of variables from X. Then for each finite 7-structure A and tuple d € U(A)*, define
a relation

ola]* 1i:={(ci,....cm) € UA)" | Ak g[aS---£2]}  U(A)™.
|

In §4.1.] we considered matrices defined by tuples of formulae (viz. Definition [4.2). Here
we extend that notation to allow some of the named variables to be interpreted by a fixed
assignment.

Definition 6.12. Let k, p, m, s and t be positive integers, with m < k, p prime, and s + t = m.
Let X = (x1,...,x;) and consider tuples i = (i,...,i5) € [k]*and j = (ji,..., ;) € [k]" of
distinct integers indexing variables in x.

1. Consider a L[7]-formula ¢(X). Then for each finite 7-structure A and a € U( A)k,
write
fmat, ; (¢, A, @), : U(A)* x U(A)' > GF,

to denote the (0, I)-matrix over GF, defined by

1 (Be) e paA i,
f t. - )A) : b’ e ’
maj x,z,](q) a)p ( C) {0 otherwise

for b e U(A)* and ¢ € U(A)".

2. Consider a tuple @ = (¢, ..., ¢p_1) of L[ 7]-formulae and suppose that all the formu-
lae occurring in @ have free variables amongst x. Then for each finite 7-structure A
and d € U(A)K, write

fmat; ; (D, A, d), : U(A)” x U(A)' > GF,

to denote the matrix over GF, defined by

p-1
fmati);’f(GD, A, d), = ; i fmati,;j(q),-,A, i), (mod p).

That s, fmatij’ f( D,A,4d) pisalinear combination of (0,1)-matrices fmati,;, ]7( 9i,A,a) 2
with scalar coefficients defined by the position of each formula ¢; in the tuple ©.

Lemma 6.13. Suppose (A, d) =Ry (B, b) and let % be a tuple of variables whose length
matches that of a and b. Let s and t be positive integers with s+t = m. Then forall ¢y, . . ., Pp1€
R with free(p;) € %, and all tuples i € [k]*, j e [k]' with |i U j| = m, it holds that

rank(fmat - (D, A, d),) = rank(fmati,;j(d), B, l;)p),

X,i,]

where the matrix rank is taken over GF, and @ := (@1,...,¢p-1).
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Proof. Let (A, d) € fin[1; k]. Then for all tuples ® = (¢, ..., ¢,1) of Rg;m—formulae, with
free(¢;) € %, and all i € [k]*, j € [k]" with || U j| = m, the formula

I'k;l((xu, e )xis)’ (le’ e ’ij))‘((Pl’ e )q)p_l)

is in tp(ng;m; A, ) exactly for the number [ := rank(fmatf’lrj(d), A, d),). The statement of
the lemma now follows by considering that tp(Ré‘,;m; A,ad) = tp(Rg;m; B,b). O

We are now ready to prove Theorem|[6.7} The proof is given in two separate lemmas, one for
each implication.

Lemma6.14. If (A, d) £Rpom (B, b) then Spoiler has a winning strategy in the k-pebble m-ary
rank-partition game over GF, starting with positions (A, d) and (B, b).

Proof. If (A, d) +Rpm (B, b) then there is a formula ¢(%) ¢ ng;m of quantifier rank { such

that A £ ¢[a] but B £ —¢[b]. If { = 0 then the mapping A — B defined by the pebbled
elements G — b is not a partial isomorphism and Spoiler has won the game. For the inductive
step, suppose that { > 0. We show that Spoiler can in one round force the game into positions
(A,d")and (B, b’) where (A, d") and (B, b") can be distinguished by a formula of quantifier
rank {’ < {. By a repeated application of such moves we get a strictly decreasing sequence of
ordinal-valued quantifier ranks, which must have finite length. This gives Spoiler a strategy

to win the game in a finite number of steps, as claimed.
We can assume without loss of generality that ¢ is of the form

rk;l((xip . )xis), (le, . ,x]‘t))-((Pl) e ,q)p—l)

for some ] > 0,s,t >1and s + ¢t = m. Other cases reduce to this one through the symmetry
of the claim (we are considering an equivalence relation) and, if necessary, by replacing ¢ by
one of its Boolean constituents. Set i = (i,..., i), j = (ji,...,j¢) and @ = (@1,..., 9p1).
Then by the assumption on ¢,

rank(fmatﬁ,]r(d), A, d),) # rank(fmatﬁ,]v(d), B, ?))p). (t)

Spoiler now starts the round by declaring s and ¢ and picking up the pebbles with labels
i1, ..., is,and ji, ..., j;. Duplicator has to respond by choosing partitions P, Q and a bijection
f : P - Q, which satisfy the requirements of the game. If Duplicator fails to properly respond
to the challenge of Spoiler, then Spoiler wins the game immediately, so assume that P, Q and
f satisfy the rank condition (). Then the following claim shows that the partitions proposed
by Duplicator must contain a block with tuples that disagree on one of the formulae ¢;.

Claim 2. There is a block P ¢ P and tuples ¢ € P and d € f(P) for which there is some formula
¢; in O such that
Argilagh-pott..ex]

and

Tpd...ds dssr,, dsst
B —gilbg 35t

or vice versa.
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Proof of claim. Suppose, towards a contradiction, that each block P € P contains only tuples
that all realise one or the other, ¢; or —¢;, and all tuples in f(P) realise the same (corre-
sponding) formula, for each i € [p — 1]. Hence, the map 1 : P - p([p —1]) that associates
with each P € P the set of formulae in ® that are realised by some (and hence all) tuples in P
is well-defined. Note that for each P € P, the formulae

/\ ¢iand A\ -Q;

iei(P) i€[Lp—1]~:(P)

are realised by all tuples in P.

Now consider the matrix fmat; ; j(d), A, d), defined over A. By the assumption, we can find
alabelling y : P — [0, p — 1] such that

=\ _ AP bY. = MQ
fmat)?);)]?(CD, A,d)p=M, and fmati,;’j(d),B, b), = MZ e

For instance, y can be defined by y(P) := ¥ ;,(p) i for each P € P. But
rank(fmatf’;j(@, A, d),) # rank(fmati’;j(@, B, l;)p)
_,) since we assumed that Duplicator’s response satis-

by , while rank(M)l,)) = rank(M?of
fies the rank condition of the game. Therefore, we have a contradiction. O

Now Spoiler picks some block P that satisfies the statement of the claim. This allows him to
place the chosen pebbles on elements (cy,...,¢,) € Pand (di, ..., dy,) € f(P) such that the
two structures, with the corresponding pebble placements, can be distinguished by a formula
of quantifier rank {’ < (. a

Lemma 6.15. If (A, d) =Rpim (B, b) then Duplicator has a winning strategy in the k-pebble
m-ary rank-partition game over GF, starting with positions (A, @) and (B, b).

The basic idea behind the proof of this lemma is as follows. At every round in the game, the
strategy of the Duplicator is to define partitions P and Q by grouping together in each block of

a partition all the elements realising the same =Rpim -type (with respect to the current game
positions). The bijection f : P - Q is similarly defined by pairing together blocks P ¢ P

k
and Q € Q whose elements all realise the same =" -type. If Duplicator can play in this
manner, she can ensure that any choices made by Spoiler are restricted to blocks which do
not distinguish the two structures.

— k 7 . . .
Proof. Assume (A, d) =Rpm (B, b). We show that Duplicator has a strategy to maintain
k
=Rpm -equivalence of game positions. In other words, we show that no matter which pebbles

Spoiler chooses in the next round, Duplicator can respond with partitions that satisfy the

requirements of the game and which ensure that the resulting game positions will be =Rpim
equivalent. Throughout, we write ¥ = (xj, ..., X)) to denote a k-tuple of distinct variables.
Now suppose that Spoiler starts a round by choosing a pair of integers s and ¢ with s+ ¢ =
m and picking up pebbles labelled iy, . .., i, ji, . . ., js, in that sequence. Write i= (i1y .. .» ds),
7= (jis-.-»jt) and I = ij for short. For each a ¢ Tp(Rf,;m; 7, k), let 9, (%) be the formula of
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Rk that isolates & over finite 7-structures (by Lemma . That is, ¢ (%) will be realised

in A by atuple £ if and only if tp(RX. ; A, ) = &, and similarly for tuples over B. Now define

psm>

Py i= guld]* 1 ={(ct,. ., cm) € UA)" | tp(Rpps A, @--52) = a} € U(A)™,
Qo= @a[b1® 11 ={(d1, ... dm) € UB)" | tp(Rp,,s B, b§--92) = a}  U(B)".

That is, each P, consists of all m-tuples that, when used to replace elements of 4 according
to the index pattern /, results in a tuple whose type over A is « (and similarly for each Q,).
The strategy of Duplicator is now to respond with partitions

P:= {Py|a€Tp(R},,; 7, k) and P, 2},
Q:={Qu|ac Tp(Rf,;m; 7,k) and Q, # @},

and a mapping f : P — Q defined by P, — Q, for all non-empty P,. It should be clear that
P and Q are partitions of U(A)* x U(A)" and U(B)* x U(B), respectively (just observe that
each tuple of elements realises only one type). It remains to be shown that P, Q and f satisfy
the requirements (*) of the game.

Claim 3. The mapping f is a bijection.

Proof of claim. For all types «, it holds that

P,=@ < rk;o((xil,...,x,-s), (Xj15- 5 %j,))-(9a) € tp(RPm, a,

where ¢, is defined as the conjunction of all formulae in «, as before. Here the formula
rkzo((xll, o Xi)s (X505 Xj,)).(@q ) asserts that the number of distinct tuples (xy,, ..., x;,,)

that realise ¢, over (A, a) is nil. As tp(RP wAd) = tp(Rp ..;B, D), it follows that the two
partitions P and Q have the same cardinality, and the claim follows. OJ

Claim 4. For all labellings y : P — [0, p — 1] it holds that rank(M)},)) = rank(M;}Of_1 ).

Proof of claim. Lety : P — [0, p — 1] be a labelling. From the definition of P, it can be
seen that the collection of blocks labelled i € [0,p —1] by y corresponds to a class of types
Q; ¢ tp(Rp w3 A, d), with each type a € Q; isolated by a formula ¢, € Rp > as before. That
is, for each type «a it holds that

ae Q< y(Py) = y(@a[d]* 1) = i.
Fori e [0,p—1],let y; := V4eq, Pu € Ré‘,;m. It can now be seen that

M = Z; ( Z fmatxij(goa,A a)p)

= aeQ);
p-1
=, 1 ix fmatz’;’j?(l//i,A, a)p
i=

mat)-c»)l'-')]?(llll, Ces Wp_l, A, Ei)p,



6.3. Pebble games for generalised quantifiers 107

and
p-1 .
M)?of’l = Z ix ( Z fmat)—c»),?j((P(x,B,b)p)
i=1 aeQ);
p-1

=) ix fmat}’;’j(llli,B,l;)p

mat)«é,?’f(vfl, e ey 'l!/p_l, B, b)p

By Lemma|6.13| we know that
rank(fmati’;’]f(l//l, ceoWpL A, [i)P) = rank(fmatf);j(l//l, s ¥p1, By b)p).
Hence, rank(Mg )= rank(M;zO f*l) over GF, as required. O

By these claims it can be seen that for any block P € P, any choice of elements (1, ..., ¢;,) € P
and (dy,...,dm) € f(P) that Spoiler can make will result in tuples
Gl Gl Cxtgnd ph.. i de
I Is J1 Jt I Is N1 Jt
k
that realise the same Rf);m-type. Hence, =»m -equivalence of game positions is maintained.
O

Compared with the Immerman-Lander game or the Hella bijection game, it is clearly much
harder for Duplicator to maintain a winning strategy in the rank-partition game. This of
course corresponds with the fact that rank logics are strictly more expressive than counting
logics. Generally speaking, in order to construct a winning strategy for Duplicator in the
rank-partition game, the size of the blocks in the set partitions P and Q becomes a crucial
measure. With larger blocks, Spoiler has more freedom in placing down pebbles at the end
of the round, but the rank condition is more easily satisfied. Conversely, with smaller block
size, Spoiler is given fewer options for placing down pebbles, but it becomes harder to ensure
that the rank condition is fulfilled.

6.3 Pebble games for generalised quantifiers

It was shown by Dawar [I5] that if there is a logic that captures PTIME, then there is such a
logic obtained by adding one vectorised family of generalised quantifiers to first-order logic.
A game-based method that can characterise expressibility in logics with generalised quanti-
fiers would therefore be an important tool for studying the descriptive complexity of PTIME.
Previously, there have been some attempts to define a general game template for this pur-
pose. In [37], Hella developed the n-bijective two-player game, and showed that this game
characterises exactly the expressive power of finite-variable infinitary logic extended with all
generalised quantifiers of arity up to n. An attempt to develop a more fine-grained game
argument was made by Kolaitis and Vdiandnen [48], who studied fixed-point and infinitary
logics extended by arbitrary sets of generalised quantifiers. Their game crucially relies on
Spoiler choosing only definable sets or relations in one of the game structures. Since the
aim of the game method is to provide an alternative combinatorial view of definability, this
approach is not entirely satisfactory.
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In this section we address to this topic by giving an alternative game characterisation of
finite-variable infinitary logic equipped with any set of generalised quantifiers. These games
are based on the idea of using set partitions to restrict the possible moves in a pebble game,
just like the rank-partition game we discussed earlier.

Definition 6.16 (k-pebble Q-partition game). Each round in the k-pebble Q-partition game
starts by Spoiler choosing a quantifier Q € Q. Write (ny,...,1,) to denote the type of Q,
where each #; is a positive integer, and let n := max{n, ..., n,, }. The rest of the round then
proceeds as follows.

1. Spoiler picks up n pebbles from A and the n corresponding pebbles in the same order
from B.

2. Duplicator has to respond by choosing a triple (P, Q, f) where:

(a) Pisa partition of U(A)",
(b) Qs a partition of U(B)" with the same number of blocks as P, and
(c) f:P — Qisabijection.

Together, these objects have to satisfy the condition that for all collections of blocks
S1€P,...,S,, cP,itholds that

(U(A); X1,..., Xm) €Q < (UB) Yi,..., Vi) €Q, (%)

where for each i, X; := proj(Upes, P, ni) and Y; := proj(Upes, f(P), ;) are relations
of arity n; over U(A) and U(B), respectively (obtained by taking the projection of a
relation of arity n onto its first n; coordinates)

3. Spoiler next picks a block P € P and places the n chosen pebbles from A on the ele-
ments of some tuple in P (in the order they were chosen earlier) and places the corre-
sponding 7 pebbles from B on the elements of some tuple in f(P) (in the same order).

That completes one round in the k-pebble Q-partition game. If, after this exchange, the
partial map from A to B defined by the pebbled positions (in addition to constants) is not a
partial isomorphism, or Duplicator is unable to produce the required partitions, then Spoiler
has won the game; otherwise it can continue for another round. ]

As before, we also consider the game where some of the pebbles are initially placed on the
game board. The following theorem relates definability in £¥(Q) with a winning strategy in
the game.

Theorem 6.17. Duplicator has a winning strategy in the k-pebble Q-partition game on (A, a)
and (B, b) if and only if the positions (A, @) and (B, b) cannot be distinguished in £5(Q). [

The proof of this theorem resembles the proof of Theorem|6.7} but is more technical. We omit
the details here as they are somewhat outside the scope of this thesis. Instead, we illustrate

k
the power of this design by giving alternative game characterisations of the relations =~ and

k
=C" | as follows.
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Ateach round in the k-pebble cardinality-partition game on A and B, Spoiler picks up a pebble
from A and the corresponding pebble from B. Duplicator has to respond by choosing (a) a
partition P of U(A), (b) a partition Q of U(B), with the same number of blocks as P, and (c)
a bijection f : P — Q, for which it holds that | P| = | f(P)||, for all blocks P € P. Spoiler then
picks a block P € P, and places the chosen pebble in A on an element in P ¢ A and places
the corresponding pebble in B on an element in f(P) ¢ B. This completes one round in the
game. If Duplicator fails to produce the required partitions or the partial map defined by
the pebbled elements is not a partial isomorphism, then Spoiler wins the game. Otherwise
it can continue for another round. It can be shown that Duplicator has a strategy to play
this game forever if, and only if, A =C* B. Similarly, the rules of the k-pebble partition game
are defined in exactly the same way as above, except we drop the requirement that any two
corresponding blocks have to have the same cardinality, i.e. Duplicator does not have to show
that | P| = || f(P)| for all P € P. It can be shown that Duplicator has a strategy to play this
game forever if and only if A =L B,

These two games can be seen as special cases of the rank-partition game, which of course
reflects the fact that the corresponding infinitary logics are both certain restrictions of infini-
tary rank logic.

Finally, we note that Luosto [56] has independently given a back-and-forth characterisation
of equality in first-order logic with any set of generalised quantifiers®. The game characteri-
sation given by Luosto is not based on a partitioning method like the one we described above.
Instead, in Luosto’s game, Duplicator can respond to Spoiler choosing a relation in one struc-
ture by either accepting the choice (and giving a matching relation in the opposite structure)
or by challenging Spoiler’s choice. The latter ensures that Spoiler will only choose definable
relations at any point in the game, without making ‘definability’ an explicit requirement of
the game rules.

*This was kindly pointed out to us by one of the examiners of this thesis.



Chapter 7

Non-definability results for
fixed-point logic with rank

Throughout this dissertation, we have given a number of examples illustrating the expressive
power of rank logics. For instance, we have shown that many of the problems known to sepa-
rate IFPC from PTIME, such as deciding the parity of CFI graphs and deciding isomorphism
of multipedes, are already expressible in first-order logic with rank, so also in IFPR. However,
it can be seen that for all the expressive results we have obtained, the underlying construc-
tion has been based on matrices or linear equations over a fixed finite field. For instance,
the two examples mentioned earlier rely on solving linear equations over the two-element
field. This raises an important question, which is to what extent does the characteristic of the
underlying field affect the expressive power of the corresponding rank logic?

In this chapter we give a partial answer to this question, by using the rank-partition game to
delimit the expressive power of rank logics restricted to a fixed arity and a fixed prime field.
Recall that for a prime p and m > 1, we write FOR,,,, to denote FOR, restricted to rank
operators of arity at most m. Similarly, we write Ry, to denote finite-variable infinitary
logic with rank quantifiers of arity at most m over GF,. With this notation, our main result
can be stated as follows.

Theorem 7.1. For all distinct primes p and q, there is a property of finite structures which is
definable in FORgy, but not in Ry,

Asadirect corollary we get a partial separation of fixed-point rank logics over different prime
fields.

Corollary 7.2. For all distinct primes p and q, IFPR;, # IFPRy,, over finite structures.

For the proof of Theorem 71} we define for each pair of distinct primes p and g a sequence
of polynomial-time decidable and pairwise disjoint classes of finite structures, Co, ..., Cy1.
Here the signature of the structures depends only on g. We show that for each i € [0, q — 1],
there is a first-order definable reduction from the problem of deciding membership in C;,
given a structure in C := J; C;, to the problem of deciding solvability of a system of linear
equations over GF,. Coupled with the fact that the class C can be defined in first-order
logic with counting, this shows that each C; can be defined by a sentence of FOR,. We then
establish that for each integer k > 2 and all distinct i, j € [0, g —1], there are structures A € C;

110
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and B € C; for which it holds that Duplicator has a winning strategy in the k-pebble 2-ary
rank-partition game over GF, on A and B. This illustrates that none of the classes C; can be
defined in R, which completes the proof.

The remainder of this chapter is split into three main sections. In §71)we define a family of
structures, called C-structures, that will be used to define the main separating query for the
proof of Theorem [71] This construction is quite generic, and is not restricted to the applica-
tion we describe in this chapter. Broadly speaking, the structures we define are obtained by
fixing an Abelian group H and encoding a small circuit, with values from H, into a larger
graph with some auxiliary relations. This method of encoding a circuit G over H into a
structure C(G, H) can be seen as a variant of a construction by Toran [64], who considered
arithmetic circuits with designated input and output nodes at each gate. Our “H-circuits’,
on the other hand, are designed to model a closed network where each node is assigned a
charge, which in this case is an element of the group H. This intuition allows us to show that
there is a direct correspondence between the automorphisms of a structure C(G, H) and
redistributions of charge on an H-circuit G.

In §7.2|we describe families of matrices obtained by uniformly partitioning finite sets with
certain properties. To simplify our notation, we describe this construction in quite generic
terms, even though the partitions we obtain will ultimately be applied to the vertex sets of
C-structures. Having defined these partitions, we then explicitly construct invertible linear
transformations that relate matrices obtained by one kind of partition to matrices obtained
by a slightly different partition.

Finally, in §7.3| we will, for each pair of distinct primes p and g, give a winning strategy
for Duplicator in the rank-partition game over GF, played on a pair of C-structures A and
B over the same H-circuit G. Here the group H is taken to be the additive group of integers
modulo g. The technical argument for showing that Duplicator’s winning strategy satisfies
the algebraic condition of the rank-partition game is obtained by appropriately applying the
matrix partitions developed in to C-structures.

71 Building blocks

In this section we define the structures that will be used in §7.3|to describe a winning strategy
for Duplicator in the rank-partition game. These structures are obtained by first fixing a
finite group H and a graph G where the vertices have been labelled with values from H. It
will become convenient to view a graph of that form as a circuit over the group H, as we will
discuss further in Then, given G and H as above, we expand the circuit G into a larger
structure by combining a series of graph gadgets along with some auxiliary relations on the
edges to encode the group operation on H. This construction will be described in further
detail in The main feature of these structures is that they are very rich in symmetries,
as we will discuss in Due to these symmetries, it will be possible for Duplicator to
hide the difference between a pair of similar but non-isomorphic structures of this form by
continuously moving around the small area of difference, as we will see later.

711 Circuits over Abelian groups

Consider an Abelian group H, written additively and with zero 0. For any function f : A —
H, where A is a finite set, we write f(A) := Y .4 f(a). A circuit over H, or an H-circuit, is a
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pair (G, y), where G = (V,E) isagraphand y : V — H a function that assigns a charge y(v)
to each vertex v € V in the circuit. An H-redistribution on G is a function t: V. xV - H
which satisfies:

L t(v,w)=—t(w,v) forall vw € E, and
2. t(v,w) =t(w,v)=0forallvw ¢ E.

The result of performing an H-redistribution ¢ on a circuit (G, y) is a new circuit (G, y'),
where
P =)+ X ),
weN(v)
for all v € V. That is, for each edge vw € E, exactly t(w, v) units of charge flow from w to
v. Equivalently, exactly t(v,w) = —t(w,v) units of charge flow from v to w. Note that this
process preserves the total charge on the circuit, for

YV =2y =200+ Y twy))

veV veV weN(v)
= Z‘:/y(v) + EE(t(v,w) + t(w,v))
= Z y(v) + Z (t(v,w) - t(v,w))
veV vweE
= ZVY(V) =y(V).

Example 7.3. We illustrate an H-redistribution on a graph G = (V,E), where H is the
additive group Z/(5Z).

@Q._é

(a) Before applying t. (b) H-redistribution ¢. (c) After applying ¢.

0

The first figure (a) above shows the initial circuit, where the charge on each vertex is indi-
cated by its label. The redistribution t : V' x V' — H is illustrated in figure (b). Here, the edge
labels, together with the orientation of the edges, determine ¢. That is, if there is a directed
edge from v to w with label ¢, then ¢(v, w) = c and t(w,v) = —c. Figure (c) shows the result
after applying the redistribution ¢ on the original circuit. Here, all the arithmetic is modulo
5; for instance, the charge at the bottommost vertex, after redistribution,is4+4-0=8=3
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mod 5. Note that the total charge before redistribution (7 = 2 mod 5) and the total charge
after redistribution (c) (12 =2 mod 5) are the same, as expected. [

Later in this section, we will need the following basic result on H-circuits.

Lemma 7.4 (Charge preservation lemma). Let (G,y) and (G, o) be H-circuits, where G =
(V,E) is a connected graph and H a finite Abelian group, written additively. Then y(V') =
o (V) if and only if there is an H-redistribution t such that y' = 0.

Proof. The “if” direction is clear, for an H-redistribution preserves the total charge on a
circuit, as noted above. For the other direction, suppose (G, y) and (G, ¢) are H-circuits as
described and y(V) = o(V). Let T = (V, F,r) be a directed spanning tree of G with root
r € V (that is, the edges are directed from the root). Suppose r has at least one child in T;
otherwise the claim holds trivially.

We construct an H-redistribution ¢t : V x V' — H as follows. Firstly, we set t(v,w) = 0
forall v,w € V with (v,w), (w,v) ¢ F. Secondly, we define t(v, w) for all (v, w) with either
(v,w) € For (w,v) € F by induction, starting with the leaves of the tree T and moving
upwards towards the root.

o Basecase. Ifvisaleaf of T, with parent w, thenset t(v, w) := y(v)—0o(v) and t(w, v) :=
o(v) —y(v). Then y'(v) = y(v) + t(w,v) = o(v), as required.

o Inductive step. Consider a vertex v with children uy, . .., uy, and suppose that ¢(v, u;)
and t(u;,v) are already defined, for each i € [k]. If v is the root then we are already
done; if not, suppose v has parent w. Then we set

k
t(w,v)=a(v) —y(v) - Z; t(ui,v),

and t(v,w) := —t(w, v). By this definition,
k

Y'(v)=y(v) + Z t(x,v) =y(v) +t(w,v) + Z t(uj,v) =o(v),

xeNg(v) i=1

as required.

By the induction, this procedure constructs a function ¢ such that y*(v) = o (v) for all vertices
v # r. Hence, y'(V ~ {r}) = 6(V ~ {r}). We claim that it also holds that y*(r) = o(r), which
then completes the proof. To show this, we use the fact that ¢ is a redistribution, so the total
charge must be preserved. Hence, y'(V) = ¢(V) and

YV =y () +y (VN {r}h) =y'(r) + o (VN {1}),

which shows that y'(r) = o(r).
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7.1.2 (C-structures

We now describe a scheme for encoding H-circuits (G, y) into finite relational structures
Cu(G,y) with specific properties. The structure Cy(G,y) consists of a highly symmetric
graph along with auxiliary relations that encode the group operation on H. The role of these
auxiliary relations is to ensure that each automorphism of Cy (G, y) corresponds to a redis-
tribution of charge on the H-circuit (G, y), as we will see later. Note that from now on, we
assume that all graphs have at least two vertices.

Before describing the encoding scheme, we establish some common notation. For f, g: A —
H, where A is a finite set, we write f — g and f + g to denote the functions x — f(x) — g(x)
and x — f(x) + g(x), respectively, for x € A. For i € H, write (A - H); to denote the set
of functions f : A - H with f(A) = i. Observe that forany i,j € H, f € (A - H); and
g€(A—>H)j,wehave f+ge(A—H);,jand f - ge (A— H);_j.

Now let G = (V, E) be a graph and define sets

B(v,w) :={(v,w,i)|ie H} <V xVxH Vv,we V withvw € E,

O(v):= |J B(v,w)SVxVxH Vv eV, and
weN(v)

I(v,k):=(E(v) > H)g VveV VkeH.

Definition 7.5 (Graph gadgets). Let G = (V,E) be a connected graph and let H be a fi-
nite Abelian group. For v € V and k € H, write Xy(v, k) to denote the graph on vertices
O(v)UI(v, k) with edge relation

E(Xu(v,k)) :={{(v,w,i), f} | (v,w,i) € O(v), f € I(v,k) and f(vw) = i}.
We collectively refer to graphs of the form Xy (v, k) as graph gadgets. |

We refer to the two collections of vertices O(v) and I(v, k) as the outer vertices and inner
vertices of Xy (v, k), respectively. Note that each X (v, k) is a bipartite graph, as the only
edges are those between outer vertices and inner vertices. An example of a graph gadget is
shown in Figure

Definition 7.6. Consider an H-circuit (G, y), where G = (V, E) is a connected graph and H
a finite Abelian group. Let C};(G, y) be the graph obtained from the disjoint union of graph
gadgets Uy Xx (v, y(v)) by adding an edge between all vertices (v, w, i) and (w, v, j), for
vweEandi,je H. |

Observe that for each vw € E, the subgraph of C},(G, y) induced by B(v,w) U B(w,v) is a
complete bipartite graph, with the two parts given by B(v, w) and B(w, v). We now introduce
the main building blocks that are used in this chapter, each one a finite relational structure
encoding an H-circuit (G, y), where G is a linearly ordered graph. Such an encoding is
obtained from Cj;(G, y) by including a linear preorder on the vertex set and adding auxiliary
relations for describing the group operation on H.

Definition 7.7 (C-structures). Consider an H-circuit (G, y), where G = (V, E, <) is an or-
dered connected graph and H a finite Abelian group, written additively. The ordering <
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—— GRAPH G

o=

(v,2,0) (v,9,2)

Figure 7.1: A graph gadget X (v, 0) for the additive group H = Z/(3Z), constructed from a vertex v
in G of degree three. The vertex v is shown in the inset with its three neighbours x, y and z labelled.
Each inner vertex in (E(v) — H)jy is labelled by the values it takes on each of the three edges vx, vy
and vz, in that order. That is, we write f(; ; «) to denote the function defined by: vx ~ i, vy + jand
vz — k. Observe that X (v, 0) is bipartite: the only edges are those between outer vertices and inner
vertices.

induces a lexicographic ordering on V' x V which we call j.x. Let

Cu(G,y) = (Cu(G,y) < (A kert)
where the linear preorder < is defined by
o fxgifandonlyifv <w,forall feI(v,y(v)),geI(w,y(w))andv,we V;
o f<(v,w,i), for all inner vertices f and outer vertices (v, w, i); and

o (vi,w1,01) < (va2,wa,1z) if and only if (v, wy) <ex (v2,w2), for all outer vertices
(Vl: Wi, 11) and (VZ: w2, iZ);

and
A ={{(v,w,i),(w,v,j)} |vwe Eandi+ jek} C E(C;(G,y))

is a collection of edges, for each k € H. [ ]

We collectively refer to structures of the form Cy (G, y) as C-structures (for lack of a better
term) and denote by 7 the signature of C-structures over a group H. Note that the preorder
< serves mainly to restrict the automorphisms of each Cy (G, y) (as well as isomorphisms
between different C-structures) to maps that preserve each set of inner vertices I(v, y(v))
and each set of outer vertices B(v,w), for v € V and w € N(v). For each vw € E, the
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relations Ay, k € H, can be seen as a colouring of the edges in the complete bipartite graph
induced by B(v,w) U B(w,v). In this sense, an edge (v, w, i)(w, v, j) is given the colour Ay
ifand onlyifi + j = k.

71.3 Isomorphisms of C-structures

We complete our study of C-structures by showing that automorphisms of Cy (G, y) cor-
respond with certain redistributions of charge on the H-circuit (G, y). This supports our
previous claim that C-structures are rich in symmetries. In particular, the connection be-
tween symmetries and H-redistributions allows us to show that two structures Cy (G, y) and
Cu(G,y") are isomorphic, if and only if the two circuits (G, y) and (G, y") have the same
amount of H-charge.

The first step in this analysis is to consider maps between different graph gadgets, as in the
following lemma.

Lemma 7.8 (Graph gadget isomorphisms). Let G = (V, E) be a connected graph and let H
be a finite Abelian group, written additively. Let k € H and v € V. Then for any function
h:E(v) — H, there is a unique isomorphism

op: Xg(v, k) = Xy(v,k+ h(E(v)))
for which it holds that ¢, : (v,w,i) — (v,w,i+ h(vw)) for each vw € E(v) and i € H.

Proof. Letl := k + h(E(v)) and write Xy(v,k) = (Vi, Ex) and Xy (v,1) = (V}, E;). We
define ¢, : Vx — V; by

op: (viw,i) = (v,w,i+h(vw)) forall (v,w,i) € O(v),
op:fr f+hforall fel(v,k).

We claim that ¢y, is an isomorphism. First of all, note that if f € I(v, k) then f(E(v)) =k,
and hence

(f+h)(E(v)) = f(E(v)) + h(E(v)) =k + h(E(v)) = L.
Therefore, f + h € I(v,1). All that remains is to show that for any two vertices x, y € Vj,
xy € Ey if and only if ¢, (x)¢,(y) € E;. In each of the two graphs, there are only edges
between outer vertices and inner vertices. Consider an outer vertex (v,w, i) and an inner
vertex f in Xy (v, k). By definition of the edge relations E; and E;,

(viw,i)f € Ep < f(vw) =i
< f(vw) + h(vw) =i+ h(vw)
< (f+h)(vw)=i+h(vw)
< (v,w,i+h(vw))(f+h)€E
< on((vsw,1))on(f) € Ey,

as required. To show uniqueness, suppose that there is an isomorphism v : Xy (v, k) —
Xu(v, 1), different from ¢, with the property that y((v,w,i)) = (v,w, i + h(vw)) for all
(v,w,i) € O(v). By assumption, there must then be at least one vertex f € I(v, k) such that

v(f) # en(f)-
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Consider (v,w, i) € O(v) so that (v,w,i)f € E, and hence f(vw) = i. Since y is an
isomorphism, we must have y((v, w, i))w(f) € E;, or equivalently, y(f)(vw) = i+ h(vw) =
f(vw) + h(vw). This implies that y(f)(vw) = (f + h)(vw) for all vw € E(v); that is,
v(f)=f+h=¢,(f) — acontradiction. O

Lemma 7.9. Let G = (V,E,<) be an ordered connected graph and let H be a finite Abelian
group, written additively. Let y,o : V — H be charge functions on G. Then Cy(G,y) =
Cu(G, o) if and only if there is an H-redistribution t on G such that o = y'.

Proof. Consider two H-circuits (G,y) and (G, ¢), as in the statement of the lemma. For
k € H, we write Ax(Cu(G,y)) and Ax(Cu(G,)) to denote the Aj-relation in Cy(G, y)
and Cy(G, o), respectively.

For the “if” direction, suppose t : V x V — H is an H-redistribution on G, such that ¢ = y'.
For each v € V, write h;, : E(v) — H for the function defined by vw ~ t(w,v). That is, for
each edge vw € E(v), hy,(vw) describes the amount of charge being redistributed from w
to v. By definition of H-redistribution,
Y =y()+ Y tw,v) =y(v) + hey (E(v)),
weN(v)

so by Lemma @, is an isomorphism from Xy (v, y(v)) to Xy (v, y(v) + by (E(v))) =
Xy (v,y'(v)). By combining all the maps (¢, , )vev, write

nt: Cu(G,y) = Cu(G.y")
to denote the map which is defined for all v € V and x € Xy (v, y(v)) by

m1(x) = on,,, (%)

We claim that 7; is an isomorphism. Since each ¢y, , is an isomorphism from Xy (v, y(v))
to Xy (v,y'(v)), it follows that 7, preserves the preorder < and all edges between inner and
outer vertices. In particular, it maps the set of inner vertices I(v,y(v)) induced by a ver-
tex v € V to the corresponding set of inner vertices I(v,y'(v)) and maps the set of outer
vertices B(v, w) induced by an edge vw to the corresponding set of outer vertices B(v, w)
in Xy (v,y"(v)). Since (B(v,w), B(w,v)) forms a complete bipartite graph, it follows also
that 77; preserves the edge relation between elements of B(v, w) and elements of B(w, v), for
vw € E. All that remains to show is that 77; preserves the edge colour relations Ay, for k € H.
Recall that the H-redistribution ¢ satisfies the condition #(v,w) = —t(w,v), for all vw € E.
Then by the definition of 7, it holds that

s (vow, i)~ (v,w,i+t(w,v)) and

e (w,v, j) e (w,v, j+ t(v,w)) = (w,v, j— t(w,v)),

forall vw € E and i, j € H. Hence,

i (vow, i)m(w, v, j) € Ap(Cr(G,y"))
<(i+t(w,v))+(-t(w,v)) =k
<i+j=k
<(v,w,i)(w,v,]) € Ar(Cu(G,y)),

as required.
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For the “only if” direction, suppose there is an isomorphism 7 : Cy(G, y) —» Cu(G,0). As
must preserve the preorder <, it follows that each set of outer vertices B(v,w) in Cy(G, y),
induced by an edge vw, is mapped to the corresponding set of outer vertices B(v,w) in
Cr(G, ). The following claim shows that the mapping B(v,w) ~ B(v,w) induced by 7
will not be arbitrary.

Claim 5. For every v,w € V with vw € E, there is A,,, € H for which it holds that m; :
(v,w,i)— (v,w,i+A,,), forallie H.

Proof of claim. Suppose, towards a contradiction, that there are v,w € V, with vw € E, and
i,je€ H,i# j,such that

Tyt (V,W, 1) > (V,W, i+ A,) and

e (vow, j) = (vow, j+ Aj),

but A; # A;. Since m; is an isomorphism, it must preserve the relations A, m € H. Hence it
must hold that

e (vyw,—i) > (v,w,—(i+A;)) and
e (vow, —j) = (vow, =(j + Aj)).

Write i — j = m, where m # 0 by assumption. Then (v,w,i)(w,v,—j) € A;,(Cu(G,y)) and
therefore 7, (v, w, i)m,(w,v,—j) = (v,w, i+ Aj)m(w,v,—(j + Aj)) € Ap(Cu(G,0)). But
by definition of the relation A,,,

(vow, i+ Aj)m(w,v,=(j+Aj)) € Ap(Cu(G,0))
<S(i+A)+(=j-Aj)=m
=(i-j)+(Ai=Aj))=m+(Ai-Aj)=m,

which is a contradiction. O

Now let t : V x V' — H be the function defined by

(v, w) im {AV,W ifvweE,

0 otherwise.
Since 71; preserves the relations A,,, it must hold that A, ,, = —A,,, for all v,w € V with
vw € E. Hence, t is an H-redistribution, with yt =o0. O

By combining Lemma[7.9]and Lemma[7.4} we get the following characterisation of C-structures,
up to isomorphism.

Theorem 7.10. Let G = (V, E, <) be an ordered connected graph and let H be a finite Abelian
group, written additively. Let y,o : V — H be charge functions on G. Then Cy(G,y) =
Cu(G, o) ifand only ify(V) = a(V). O

It follows that for each G and H, there are exactly | H| distinct structures Cy (G, -), up to iso-
morphism. In the following, we write C¥,(G), for k € H, to denote the structure Cy (G, 8% ),

Vmin
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where v, is the least element of V with respect to < and Sffmm : V — H is the k-delta func-
tion on V, defined for all v € V by

k k ifv = viin,
A
Vmin 0 otherwise.

For each H and i € H, we also write C}; for the class of all C-structures Cy (G, y), with G an
ordered connected graph and y : V — H a charge function on G with y(V) = i.

7.2 Similar matrices defined by set partitions

The main challenge for Duplicator in the rank-partition game is to come up with partitions
that satisfy the matrix rank condition: that is, given a pair of partitions, the corresponding
matrices must have the same rank for all possible labellings. In this section we indicate how
this can be done when the game is played on a pair of non-isomorphic C-structures induced
by the same H-circuit. The results obtained here will play a key part in our description of the
winning strategy in

More specifically, we develop a generic matrix construction, based on partitions, and
show that non-isomorphic matrices arising from distinct partitions of the same set have equal
rank. In fact, we prove a stronger statement and show that for any pair of such partitions,
the two families of matrices obtained by running over all labelling functions are uniformly
similar, which implies that any two matrices with the same labelling function have the same
rank. To simplify our notation we keep this construction quite generic, and describe parti-
tions and matrices over arbitrary sets (with certain properties). It should be kept in mind
though that these partitions will ultimately be applied to the vertex sets of C-structures, as
noted above.

Our discussion is split into three sections. In §72.] we define the basic partitions as well
as maps between a pair of partitions of the same set. In §7.2.2]we develop technical tools to
establish similarity of matrices obtained by labelling the partitions with elements of a finite
field. Finally in we briefly sketch how these tools can be used for matrices with slightly
expanded index sets, more suitable for the situation in when we consider partitions of
C-structures.

Throughout this section we work with finite Abelian groups. If H is such a group, then we
normally write ® to denote the group operation, instead of writing the group additively as
before. The reason is that we frequently have to consider expressions that involve both arith-
metic over H as well as arithmetic over a finite field, with standard field operations + and -.
In this case, we write i © j := i @ —j, where i and j are elements of H and —j is the inverse
of j. Finally, we write @ (a slightly larger version of ®) to denote a “summation” operator,
representing the cumulative application of @ over a set of terms from H. For instance, if
X ={hy,...,hpn} € H, then we write @ h; :==h; & --- ® hy,.

7.2.1 Basic partitions

Let H be a finite Abelian group of cardinality g > 0 with group operation ®. Let p be a prime
number with (p, g) = 1and let X be a finite set of cardinality d > 2, where d is chosen such
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that

g*2=1 (mod p). (*)
For instance, by taking d = p + 1 we get ¢ 2 = ¢! =1 (mod p), by Fermats little theorem.
Foreach k € H,let Fy := (X — H); = {f € (X - H) | f(A) = k}, and write N := F,UX.
Observe that for any k € H, |Fi|| = ¢*%. For f,g: X - H, we write f © gand f & g, to
denote the functions x — f(x)© g(x) and x — f(x)® g(x), respectively, like we did in

In this section we describe ways to partition the set Ny x Nj. Recall that a partition P of a
set A is a collection of mutually disjoint and non-empty subsets of A (called blocks) whose
union is all of A. If P is such a partition and a € A, then we write [[a]]p to denote the block
containing a.

Definition 7.11 (Partition blocks). For k € H, define
(i) If:={(f.g) € Fx x Fx | f © g = h} c Ny x Ny, for each h € Fy; and
(ii) Qi,i ={(f,x) e Fy x X | f(x) =i} c Ny x Ny, foreachx ¢ Xand i € H.
We also write (ch,i)t ={(x,f)| (f,x) e in,} to denote the “transpose” of Qfﬁ,i. |

It can be seen that for any hy, h, € Fy it holds that Flfl N F;l‘z = & whenever h; # h,. Also,
it can be seen that Uy, 1",’1C = Fy x Fy. Similarly, for all x;, x, € X and iy, i, € H, it holds that
Q-’]zl,il N Ql)ﬁz,iz = @ whenever (x1,11) # (x2,12), and Uy ; ch,i = Fx x X. By putting all the
blocks 1"]’;, Qfm and (Qfm ) together, and adding a trivial partition of the set X x X, we obtain
a partition of the space N x Ny as follows.

Definition 7.12 (Set partitions). If k € H then we write P to denote the partition of Ny x Ny
defined by

Py:={T | he Foy u{Qg,, (Q) | x e Xoi e HY U {{(x. )} [ x.y € X)}.
We also consider maps between the partitions Py and Py, as defined here.

Definition 7.13 (Maps between partitions). For k € H we write ¢ : Py - P to denote the
bijection defined by

ok Tj = If Vh e F,
‘PkiQ?c,iHQ,lﬁ,,» VxeXVieH,
or: (Q2) = (QF ) Vx e X VieH,
ok { ()} P {(x,9)} Vx,yeX.
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7.2.2 Matrices defined over partitions

We now consider matrices over the prime field GF, obtained by labelling the blocks of the
partition Py by elements of [0, p —1]. The idea of defining matrices in this way was discussed
in Chapter|6] in relation to the rank-partition game, and our notation here is the same.

Let k € H and consider a labelling y : P, — [0, p — 1] of the blocks in P; with elements of
GF,. Then we write My (y) to denote the Nj x Ny matrix over GF,, defined by applying the
labelling y to Py; that is,

Mi(y) : (m,n) = y([[(m, n) ]I, ),

for all m, n € Nj. Our aim in this section is to prove the following.

Theorem 7.14 (Partition matrices have the same rank). Let k € H. Then for any labelling
y : Po = [0, p — 1], the matrices Mo(y) and My(y o ¢;') have the same rank over GF .

In proving this theorem, we actually establish a stronger statement. More specifically, for
every k € H and z € X we construct a non-singular Ny x Np matrix Sy , over GF, such that

Skz Mo(y) Sy = Mi(y o 9,

for any labelling y of the partition Py. This shows that the two matrices My (y) and My (y) are
similar, which in turn implies that they have the same rank. Note that each matrix Sy , does
not depend on the labelling y. Our construction therefore shows that the two collections of
matrices defined by Py and P, are pairwise uniformly similar, when indexed by functions in

(Po — [0, p —1]).
The matrices Sy , will be explicitly constructed as a combination of simpler “A” and “B”
matrices, which we now describe.

Definition 7.15 (B-matrices). For z € X and k € H, write By, to denote the Fy x Fy matrix
over GF, defined by

1 iff(z)ek=g(z
Bra(f8) = {0 otﬁir\?vise, #
forall f, g € F. |
We establish some basic properties of the B-matrices.
Lemma 7.16 (Products of B-matrices). Forallz € X and i, j € H, Bi.Bj; = Bigj:.
Proof. Let f, g € Fy and write

(BiBj:)(f.8) = ). Biz(f,h)Bj.(h.g)

hEF()

={heFo| f(z) ®i=h(z)and h(z) ® j = g(2)}|
(by definition of By )

= |[{heFy| h(z) = f(z) ®iand f(2) @ (i ® j) = g(2)}|
i {q“ =1 (mod p) if f(z) & (i ®j) = g(2),

0 otherwise

= Bie)j,z(f) g). (B,@j,z a GFp matrix)
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Here we have used the fact that ¢“2 =1 (mod p) by . O
Lemma 7.17 (B-matrix transpose). Forallz € X and k € H, (B ;)" = B_j...
Proof. Let f, g € Fy. Then

Bio(f.8) =1+ f(z) @k =¢(2)

< g(z) @ (-k) = f(2)
= B—k,z(g>f) =1

Hence (By.)'(f> g) = Br2(& f) = B-xo(f> 8)- O
Definition 7.18 (A-matrices). For z € X and k € H, let Ay , := By, — By, + I, where I is the
Fy x Fy identity matrix. [ ]

The following lemma shows that each matrix A , is orthogonal, with inverse explicitly given
bY (Ak,z)_1 = Atk,z = A—k,z-

Lemma 7.19 (Orthogonality of A-matrices). Ay, A}, = Ag Ak =1L
Proof. The transpose operation respects addition, so by Lemma|[717}

Atk,z = B;@z - BB,Z +1'= B = Boz+1=A ..
Hence

A A iz = (Brz—Boz+I)(B_x,~ Bo. +1I)
= (Bk,zB_k,z = Bi,zBo,z + Bi,;) — (Bo,zB_k,; = Bo,:Boz + Boz) + (B_xz — Boz +I)
= (BO,Z - Bk,z + Bk,z) - (B—k,z - BO,z + BO,Z) + (B—k,z - BO,z + I) (Lemma 7.16))
=1

O]

From now on, fix k € H and z € X and let y : Py — [0, p — 1] be a labelling of the partition
Py. Consider the two matrices Mo(y) and M (y o ¢;'), which are indexed by Ny x Ny and
Nj x Ny, respectively. Our aim is to map M (y) to M (y o ¢;') by applying the A- and B-
transformations, which are indexed by Fy x Fy. To ensure that all matrices have the same row
and column index sets, we will map My (y) to a matrix obtained by first applying a suitable
N x Ny invertible linear transformation to My (y o ¢;'), as we describe next.

Let m, x : Fyp — F) be the bijection defined for all f € Fy, g € Fy by

m(f)=g:< f(z)®k=g(z)and f(x) = g(x) forall x # z.

Write Py, for the permutation matrix representation of 7y ,. That is, Py, is the Fy x Fj
permutation matrix defined for all f € Fyand g € F by Py ,(f,g) = lifand onlyif 7, x (f) =
g. Let Qi , denote the direct sum of Py , and Ix, where Ix is the X x X identity matrix. That
is,

Fe X

o Fo Pk,Z O
Qk,z o X ( 0 IX )
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Observe that Qy, is indexed by Ny x Nj and its inverse Q,;lz is indexed by Ny x Ny. We
now consider the matrices My := Mo(y) and My := Qi M (y o ¢;") Q,;lz, which are both
indexed by Ny x Ny. We can write these as

Fo X Fy X
Fo Uy | Ry Fy Uk R k

M = M = .
°7 x ( So | Wa ) and M= ( Sk | Wi

We observe that the two matrices M and M are identical in the two submatrices indexed by
Fy x Fy and X x X, respectively. That is, Wy = Wy and Uy = Uy (and we write W := Wy = W
and U := Uy = Uy). The first equality is clear, since both ¢ and 7y, act as identity on X x X.
For the second equality, consider a pair of functions f, g € Fy. From the definition of my_, it
holds for any h € Fy that (f, g) € I} if and only if (w4 . (f), k. (g)) € F;l‘. Hence,

Ue(f>8) = y(9r > ([ (F)s 72 (£))TIp,))
= y(I(f>8)Tey)
=Uo(f.8)-

Similarly, it can also be seen that the two matrices Sp and S are equivalent in all rows indexed
by x € X with x # z. The same holds for the two matrices Ry and Ry, column-wise.

In summary, we see that the two matrices M and My are everywhere equal apart from
(potentially) the rows indexed by z € X in each matrix (the {z} x Fy submatrices) or the
columns indexed by z € X in each matrix (the Fy x {z} submatrices).

It remains to show that we can apply the A- and B-transformations to map M, to My. To do
that, we consider a series of lemmas, starting with the following.

Lemma 7.20. A; ,Ro = Ry.

Proof. For x € X, let Cy, and Cy , denote the columns indexed by x in Ry and Ry, respec-
tively. We will show that for each x € X,

Ak,z CO,x = Ck,x >

which will conclude the proof. Observe that for all x # z, Co x = Ci ., as discussed earlier. It
is only at the columns Cy ; and Cy , that the two matrices potentially differ. In order to prove
the lemma, we now consider two cases: columns indexed by x when x # z and columns
indexed by z.

For the first case, let C = Cy x = Cy, be a column indexed by an element x # z. The column
C can be written as a linear combination

C= Z O'iDl',
ieH
where each D; is a (0,1)-column and o; € [0, p —1]. More specifically, each D; is the column
vector that corresponds to the partition block QY ; = {(f,x) € Fo x X | f(x) = i} and
0; = p(QY ;) is the value assigned to Q2 ; by the labelling y. By linearity, it will be sufficient
to consider each column vector D;; that is, to show that A; ,D; = D; for any i € H.
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Claim 6. Forany i,m,n € H, By, ,D; = B,, . D;.

Proof of claim. Consider i, m € H and f € F, and write

(Bm,zDi)(f) = Z Bun:(f,)Di(g)

gGFo

= [{g e Fo| f(z) ®m = g(z) ng(x) = i}]
e

This shows that the value of (B, .D;)(f) does not depend on either m or f, so in particular
forany n € H, (B, .D; — B,..D;)(f) = ¢? > - ¢*3 = 0. O

From the claim, it now follows that
Ay:Di = (By, — Bo. +1)D; = (Bx,D; - By .D;) + D; = Dj,

as required.

Now for the second case, consider the columns Cy := Cy, and Cy := Cy, indexed by z in Ry
and Ry, respectively. For i € H we define a pair of (0,1)-vectors

1 if f(z) = i,

0 otherwise,

D) - {

and
1 iff(z)ek=1,
Di(f) = .
0 otherwise,
for all f € Fy. As before, we can express each column Cj, j € {0, k}, as a linear combination

of D{ -vectors. Hence, it will suffice by linearity to show for each i € H that A} ,D? = D¥. To
do that, fix an i € H and write

(Bx:D})(f) = 3 Bio(f>8)Di(g)

geFy
=[{geFo| f(z) @k =g(z) ng(2) = i}
={geFo| f(z) @k =g(z) = i}|
i {qd-Z if f(z) ® k = i,

0 otherwise.

Hence,

q%? if f(z) @k =i,
((Brze=Boz+ D)D) (f) ={—q* 2 +1 if f(z) =i,
0 otherwise.
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Now considering that ¢¢~2 =1 (mod p), we see that

1 iff(z)ek=1i,
0 otherwise.

(Ax=DY)(f) = DE(f) = {

The proof of the following lemma is entirely analogous to the proof of Lemma 720}
Lemma 7.21. S A;)lz = S;. ]
We now consider a transformation of the square matrix U.

Lemma 7.22. Ay, U A;’lz =U.

Proof. Write U = Y. cp, 0, Uy, where each Uy, is the (0,1)-matrix that corresponds with the
partition block I, = {(f,g) € Fo x Fo | f © g = h} and 0y, := y(I},) is the value assigned to
I, by the labelling y. By linearity, it will be sufficient to consider the matrices Uy; that is, to
show that

A, Uy A, = Uy,

for each h € F,.
Claim 7. Forallm € H, B,,, U}, = U, B,y ..

Proof of claim. Consider f, g € Fy and check:
(Bm,zUh)(f)g) = Z Bm,z(f’ e)Uh(e,g)

ecFy

= H{€EF0|f(Z)EBm=e(z)/\eeg:h}||
_ {1 if f(z) @ m=g(z) ® h(z),

0 otherwise,

and

(UnBmz2)(f>8) = Z Un(f,e)Bm,:(eg)

ecFy

=[{ecF|fee=hne(z)®em=g(2)}]
i {1 if f(z) ® m = g(z) ® h(2),

0 otherwise.

By this claim, it follows that B,, ,Uj, = Uy B, .. Hence for all m, n € H,
B,z Up By,z = Bm,z(Bn,zUh) = Bmen,z Up»

using Lemma Expanding Ay , into a sum of B-matrices, we can finally conclude:

Ak Uy AZ,IZ = (Bk,z — By, + I) Uh(B—k,Z - By, + I)
= (Bkek,z = Bkao,z + Bk, — Book,z + Bowo,z = Bo,z + B_x,; = Boz + ) Uy,
= Uy, ]
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We are now finally ready to prove the main theorem of this section.

Proof of Theorem We construct an invertible Ny x Nj linear transformation acting on
MO(Y) Let

Fo X Fy X
7 o P [ Ake| 0 \_ [ Brz—Boz+In | 0
oz = X 0 ‘ Ix B 0 ‘ Ix ’

where I, and Ix denote the Fy x Fy and X x X identity matrices over GF, respectively.
Observe that

Fy X
-1 _ Fy A;lz 0
Tk z X ( 0 Ix = Tfk z

Multiplying together Ty , Mo T} ! in block form, we get

A, UAL | AL R
Tz Mo Ty, = ( FLETAE O)

SoAL, | w

B U|Re \_
(8

where the second equality follows from lemmas|7.20] and Finally, this allows us to
conclude that the matrices Mo(y) and My(y o ¢;') are similar for any y : Py — [0,p — 1],
with the similarity transformation given by the F; x Fy matrix

o -1
Sk,z = Qk,z Tk,z-

As similar matrices have the same rank, the theorem now follows. O

7.2.3 Extended partitions

The analysis of the previous sections can also be applied to partitions of Nj x Ny, where we
now define Ny := FyU(X x H). In this case, we simply extend the action of each f € Fj to
elements of X x H, by setting f((x,i)) := f(x), for all (x,i) € X x H. All partitions and
bijections of partitions are then defined with respect to this extended action of f on X x H.
In particular, note that for each x € X and i € H, there will be |H| blocks in the partition of
the form

O jyi = {(f> (x5, ) € Fex X | f(x) = i} © N x Ny,

for j € H. All the transformation matrices can be defined as before, except that we replace
all occurrences of the X x X identity matrix with the (X x H) x (X x H) identity matrix.

Similarly, we can consider partitions of Z; x Z;, where Z; := N;UY and Y is a non-empty
finite set. Let D¢ (X, H, Y') denote the partition of Z; x Z; obtained by

o partitioning Ny x Ny according to Pj from before;

« partitioning Y x Fy into blocks IT, := {(y, f) | f € Fi} foreach y € Y;
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» partitioning Fy, x Y into blocks IT}, := {(f, y) | f € Fy} for each y € Y; and
« placing all other elements into singleton blocks.

We can define a bijection ¢4 : Do(X,H,Y) — Dy(X, H,Y) just like before, except that
we map II, ~ II, and th > H;, for each y € Y, and map each singleton block to the
corresponding singleton block. Overloading our notation, we write My (y) to denote the
Zj x Zi matrix over GF, defined by applying a labelling y : Do(X, H,Y) — [0, p —1] to the
partition. By adapting the proof of Theorem [7.14|to account for the new blocks, we get the
following corollary.

Corollary 7.23 (Rank of extended partition matrices). Let k € H. Then for all labellings
y:Do(X,H,Y) - [0, p — 1], the matrices Mo(y) and My(y o ¢;') have the same rank over
GF,. O

This corollary will play a key role in the next section, where we apply the D-partition to the
vertex set of a C-structure.

7.3 Application of the game method

In this section we apply the game method to show that for each prime p, there is a finite
Abelian group H for which it holds that for any i € H, there is no fixed sentence of Ry, that

defines the class C};. This is stated more formally by the following theorem.

Theorem 7.24 (Game winning strategy). Let p and q be distinct primes and write H = 7/ (qZ).
Then for each ¢ € H and all k > 2, there is a graph G for which it holds that Duplicator has a
winning strategy in the k-pebble 2-ary rank-partition game on Cy;(G) and Cs;(G) over GF,.

The winning strategy that we describe is obtained by combining the set-partition scheme
developed in §72| with a procedure for maintaining at every round in the game a mapping
 from CY(G) to Ci;(G) which agrees with all currently pebbled positions and is almost
an isomorphism. That is, at each round in the game there will only be a small subset X c
CY(G) where the substructures induced by X and 7(X) are not isomorphic. To ensure that
Spoiler is unable to pinpoint the actual difference between the two structures, Duplicator
keeps moving around the violating regions X and 7(X), to avoid the pebbled elements in
each of the two structures. By playing in this way, Duplicator can at each round satisfy the
algebraic condition of the rank-partition game and ensure that Spoiler is unable to find the
difference between the two structures, no matter where he chooses to place his pebbles.

To explain this game strategy in a little more detail, recall that the structures Cj;(G) and
C5;(G) are constructed from H-circuits (G,8) ) and (G, 8} ), respectively, where viin
denotes the <-least vertex in V. For ¢ # 0, these two circuits are exactly the same, except
that the first one has nil charge on every vertex while the second one has charge ¢ on the
initial vertex vmin and nil charge everywhere else. At every round in the rank-partition game
on CY(G) and C5(G), the almost-isomorphism 7 kept by the Duplicator will be chosen so
that 7(C%(G)) and Cf,(G) disagree only on the elements of the graph gadget induced by
some vertex u € V. It can be shown that such a mapping 7 corresponds to a redistribution of
charge on (G, d;, ), by moving ¢ units of charge from v, to u. In these terms, Duplicator’s
winning strategy is to continually move the c-charge around the graph G, in order to hide the
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difference between C;(G) and C;(G) from the Spoiler. To ensure that the charge can always
be moved around without violating the partial isomorphism defined by the current pebble
positions, Duplicator will simultaneously play a separate graph-searching game on G, called
the “cops-and-robber game”. By choosing the graph G in a certain way (that is, such that it
has large enough tree-width), it can be ensured that in the cops-and-robber game on G the
robber always has a strategy to evade capture. By simulating the movement of the cops in the
game on G according to the placement of pebbles in the rank-partition game on C%(G) and
Ci;(G), Duplicator can use the winning strategy of the robber to decide where to shift the
charge around the H-circuit on G. This game strategy can now be summarised as follows:

1. At the beginning of each round, Duplicator has an H-redistribution t : V. x V' — H on
G, for which there is a vertex u such that (85 )* = §¢.

Vmin

2. The redistribution ¢ will be used to construct a bijection 7 : C%(G) — C5(G), which
is an isomorphism everywhere apart from the elements of the graph gadget induced
by u.

3. The mapping 7 is then used to construct set partitions of the two structures, using the
techniques developed in By results shown there, these partitions will satisfy the
algebraic requirements of the game.

4. At the end of the round, Duplicator updates her H-redistribution ¢, so that it moves
the charge ¢ from u to u’, where u’ is a safe point for robber in the cops-and-robber
game on G, starting with robber on vertex u.

The method of constructing a winning strategy in a pebble game based on a game strategy
in the cops-and-robber game was originally described by Dawar and Richerby [20] (see also
Atserias et al. [4] for further applications of this idea). Our contribution here is to extend
this method to work in a highly uniform setting, with respect to possible moves in the cops-
and-robber game, as we will explain in further detail later.

Throughout this section, we let p and g be distinct primes and write H = Z/(gZ) to denote
the additive group of integers modulo g, with group operation &. If G = (V,E,<) is an
ordered and connected graph, then we write vy to denote the <-least element in V, as
before. Furthermore, for each ¢ € H, we write y. := §; . to denote the charge function that
assigns c to vin and is zero everywhere else.

Our presentation is organised into four main parts. In §7.3.] we recall the definition of
tree-width and the cops-and-robber game. We then prove the existence of graphs that have
arbitrarily large tree-width in addition to certain uniformity and regularity conditions, which
are required for the proof of Theorem([724} In §7.3.2]we define H-redistributions that result in
the shifting of charge from one vertex to another on a circuit, and show that such functions
induce bijections between a pair of C-structures. Then in we apply the set partitions
developed abstractly in to the C-structures Cf;(G) and C5(G). By the results of it
follows that the resulting partitions will satisfy the algebraic condition of the rank-partition
game. All the above will then be tied together in §7.3.4) where we describe the actual winning
strategy of the Duplicator in full detail. Finally, i we show that the classes C}, can be
axiomatised in FOR, for each i € H. Combined with Theorem this finally gives us a
proof of Theorem 71} which is the main result of this chapter.
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7.3.1 Tree-width and the cops-and-robber game

Tree-width is a graph parameter that, broadly speaking, measures how closely a graph re-
sembles a tree. For instance, the tree-width of a tree, of a cycle and of the n x n grid graph is
one, two and n, respectively. We will write tw(G) to denote the tree-width of a graph G. We
will not need a formal definition of tree-width here (for details, see for instance Diestel [22,
Chapter 12]). Instead, we rely on the following game characterisation of tree-width, due to
Seymour and Thomas [62].

The k-cops-and-robber game is played by two players, one of whom controls a set of k
cops that are attempting to catch a robber, which is controlled by the other player. At the
beginning of each round in the game, the robber is sitting on some vertex v on the graph.
The cops player then moves some or all of the cops from their current position (either on or
off the game board G) and places them on vertices of the graph. The cops that are not being
moved in that round are said to be stationary. While the chosen cops are moving to their new
positions, the robber can simultaneously move along any path in the graph, starting with his
current position, provided that there are no stationary cops on that path. The cops player
wins the game if at some round, the robber is unable to flee without running into a cop. It is
shown by Seymour and Thomas [62] that the cops player has a strategy to win the game on
a graph G using k + 1 cops if and only if G has tree-width at most k.

Definition 7.25 (Uniform winning strategies). Let d,k > 1and let G be a graph. Suppose
that at some round in the k-cops-and-robber game on G, the robber is sitting on a vertex v
and the cops player prepares to move [ < k cops to positions hy, ..., h; € V, with stationary
cops remaining at positions s;,y, . .., sk € V. Then we say that robber has a d-uniform escape
route from v to w, with respect to the current placement of cops, if deg(v) > d and there are
d + 1 simple paths

Priwi, s Wimg

Pd:wld,...,wdmd,

Q:vi,..., vy =W,
where n, my, ..., mg > 1, such that:
o Wi,...,wyy € N(v) are d distinct neighbours of v;
 P;Q is a simple path, for each i € [d];
o each path P;Q avoids the stationary cops.

We say that the robber player has a d-uniform winning strategy in the k-cops-and-robber-
game on G if he can play forever in such a way that at every round in the game, the robber
has a d-uniform escape route from the current position. ]

Note that, according to this definition, while the paths Py, ... P; have to be distinct, they are
not necessarily disjoint. That is, the only assumption is that any two distinct paths start with
different edges — after that, they might possibly overlap.

Lemma 7.26. For every k > 1and d > 4, there is a d-regular connected graph G for which it
holds that robber has a d-uniform winning strategy in the k-cops-and-robber game on G.
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Proof. Consider k > 1and write X = (V, E) to denote the k x k toroidal graph with vertex
set V.={(i,j)|i,j€[0,k—1]} and an edge relation defined for all (x1, y1), (x2, ¥2) € V by

(x1, 1) (x2,2) € E 1‘:’((961 =x3) A (y1—y2 =1 (mod k)))\/
((y1=y2) A (x1—x2 = £1 (mod k))).

For v € V, write v,, vy, v, v4 for the four neighbours of v in X. Ford > 4 and v € V, let
G4(v) denote the graph obtained from the complete graph on

{(v.i) [ield=3]} U{(v,w)[weNx(v)}

by removing the two edges (v, v,)(v,v}) and (v, v.)(v,v4). We refer to vertices of the form
(v, i), for i € [d — 3], as internal nodes and vertices of the form (v, w), for w € Nx(v), as
external nodes. It is clear by this construction that each internal node has degree d while each
external node has degree d — 1. Finally, let G be the graph obtained from the union of all the
G4(v), for v € V, by adding an edge between (v, w) and (w,v), whenever vw € E. By this
construction it follows that G is regular of degree d.

We claim that the robber player has a d-uniform winning strategy in the k-cops-and-
robber game on G. First of all, we note that the toroidal graph X has tree-width k (see e.g.
Bodlaender [10} §13.2]), which implies that robber has a winning strategy in the game on X
with k cops. A winning strategy for the robber player in the game on G is obtained by moving
the robber at each turn according to the winning strategy on X, finally coming to a rest at
some internal node. More specifically, if in the game on G, the robber is sitting on some
vertex in component G4(v) and the cops are located in components G;(v), ..., Gg(vim),
m < k, then the robber player consults her winning strategy in the game on X, with the X-
robber on vertex v and the X-cops on vertices vy, ..., v, (possibly with more than one cop
on a single vertex). If, according to the winning strategy on X, the X-robber would move
from v to w € V, then the G-robber is moved accordingly from its current position to one of
the internal nodes of the component G;(w). By playing in this way, it can be ensured that
the robber can evade the k cops on G forever.

Moreover, it can be seen that this game strategy is d-uniform. To show this, suppose at
some point the robber is sitting on some internal node (v, i) in component G4(v), v € V.
Suppose, furthermore, that in response to an advancement of the cops, the X-robber would
move from v to w along a path that starts with an edge vu ¢ E. In the game on G, the
robber would therefore be able to flee the cops by moving along a path that goes through
the component G;(u). The get from G4(v) to G4(u) this path has to go through the edge
(v,u)(u,v) € E(G). To reach the vertex (v,u), it is clear that the G-robber can leave its
current position (v, i) via any of its neighbours, either by moving directly to (v,u) or by
passing through some of the other vertices in G;(v), in a path that has length no more than
two. This shows that this winning strategy is d-uniform, as claimed. O

7.3.2 Some properties of H-redistributions

Ift: V xV - H is an H-redistribution on an ordered graph G = (V, E,<) and v € V, then
we write A, : E(v) — H for the function defined by A, (vw) := t(v,w), for all yw € E(v).
We say that ¢ moves ¢ to u if y := (65 )' =65,

Vmin
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Definition 7.27 (Maps induced by redistributions). Let t : V x V' — H be a redistribution on
G that moves ¢ to u, for c € Hand u € V. Then for any w € N (u), we write ;. : Ci;(G) —
Ci;(G) for the function defined as follows.

o Outer vertices. For all v, x € V with vx € E:

Teuw: (Vox,0) = (v,x,i@t(v,x)) = (v,x,i ® Ay (vx)).
o Inner vertices not induced by u. Forallv € V \ {u} and f € I(v,0):
Ttuw ' [ = f @ Agy.
o Inner vertices induced by u. Finally, for all f € I(u,0):
Teuw s f = [ @Ay @0y,

where o}, : E(v) - H is the c-delta function on E(v), defined for all e € E(v) by

c c ife=uw,
6MW e .
0 otherwise.

It is clear by this definition that 7, ,, is a bijection that preserves the preorder <. Further
properties of this mapping are summarised by the following lemma, whose proof follows
directly from the above definition.

Lemma 7.28. Let t : V x V. — H be a redistribution on G that moves ¢ to u. Then for any
w € N(u) it holds that 1, ,,,, is an isomorphism between C3,(G) N I(u, yo(u)) and C;(G) ~
I(u, ye(u)). O

7.3.3 Set partitions on C-structures

We now apply the abstract partition scheme defined in to the structures C3;(G) and
Ci;(G) and study some properties of the resulting partitions. Here we let G = (V, E, <) be
an ordered and connected d-regular graph, where the integer d > 4 is chosen so that g* 2 =

(mod p).

Consider a vertex u € V and let uw be an edge incident at u. Lett : VxV — Hon G
be a redistribution which moves ¢ to u, and let 7, ,, (as in Definition denote the cor-
responding partial isomorphism with respect to t, u and w. Write Fy = I(u,yo(u)) and
F. = I(u,y:(u)) to denote the sets of inner vertices induced by u in C%(G) and C(G),
respectively. By letting X := E(u) and Y := V(C};,(G)) \ Fo, we obtain

Pt,u,w = DO(X: Hy Y))
Qruw = Dc(ﬂt,u,w(X)y H, ﬂt,u,w(Y)); and
ft,u,w = Tuw © Peuw ¢ Pt,u,w - Qt,u,w:

where Do(X,H,Y), De(74uw(X), H, m1,4,w(Y)) and @, are defined as in Here, the
action of 71, ,, ,, is extended to sets in the obvious way. Observing that | X| = d, we can apply
Corollary[7.23|and get the following lemma.
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Lemma7.29. Foralllabellingsy : Py, — [0, p—1] it holds that rank(M;)"”’w) = rank(M)?O’J’(";lW .
[ju,w

At this point it will be useful to further analyse the structure of the partitions P; ,, ,, and Q¢ ;. ,y-
First of all, observe that if x and y are elements of C%;(G) and neither is an inner vertex from
Fo, then [(x, ¥)]lp,.., = {(x,y)} and f; ., simply agrees with the partial isomorphism
T¢,u,w- More formally, it holds that

Feaunw (LGS P ) = LTt (2 Teumw (D)) Quuw = {(Teuw (%) meumw(¥)) )5

for all x,y € V(CY(G)) \ Fy. We refer to singleton blocks of this form as trivial blocks.
On the other hand, when either or both of x and y are in F, then the corresponding block
[[(x,)]lp,.., will always contain more than one element. Such blocks are called non-trivial
blocks, and they come in three different forms:

(T1) Forall (u,w,i) € B(u,w) and f € Fy, we have

[(Cw, i), pe = {((w, ), 8) | g(uw) = f(uw)} and
[(f, (o w, i))ec = {8 (usw, 7)) [ g(uw) = f(uw)}.

(T2) For x € Y and f € Fy, we have
[ F)Ter = {x} x Fo and [(f,x)]lp,,,., = Fox {x}.
(T3) Finally, for f, g € Fo, with f © g = h, we have
[(f- )T, ={(f &) | fg' € Foand f0¢" = fo g=h}.

From these definitions, it can be seen that each block of the two partitions consists of pairs of
elements that all realise the same atomic type in the respective structure Cy;(G) or C(G).
Similarly, it can be seen from the definition that the mapping f; , ., respects atomic types.
More formally, for each P € P, ,, it holds that:

. atp(d,CY(G)) = atp(d’,CY(G)), forall d, d" € P;

« atp(b,C5(G)) = atp(b',C5,(G)), for all b, b € fi ., (P); and

e atp(d,C%(G)) = atp(b,CS,(G)), foralld e Pand b € f; ., (P).
All these observations can be summarised as follows.

Lemma 7.30 (Properties of the partitions). For all P € P, ,, and all (x1,x;) € P, (y1,2) €
fruw(P), the mapping defined by x, — y, and x, — y, is a partial isomorphism from Cj;(G)
to C5,(G). Furthermore, for all x, y € V(C3,(G)) \ Fo, it holds that [ (x, y)TIp,.., = {(x, ¥)}
and

Feuw ({6, 9)}) = {(tuw (%)s Tuw (1)) } € Quuyw-
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Lemma shows that if, at any round in the rank-partition game on C};(G) and Cj;(G),
Duplicator responds to a challenge by Spoiler with partitions Py, and Q; ., then any
placement of pebbles that can be made over those partitions will result in a partial isomor-
phism, with respect to the two pairs of pebbles. It remains to be shown, however, that the
Duplicator can subsequently move the charge c on G from u to another vertex u” in a way that
the resulting 7z-bijection respects the pebbled positions on P; ,, ,, and Q;,,,,,. This, essentially,
is what the next lemma claims.

Lemma 7.31. For any non-trivial block P € Py, and all (x1,x2) € P, (y1,¥2) € fruw(P),
there is a function p : E(u) — H for which it holds that:
(i) p(E(u)) =¢
(ii) if s : V. x V. — H is a redistribution on G that moves c to some vertex v and satisfies
s(u,x) = t(u,x) ® p(ux), for all ux € E(u), then for any v' € N(v) it holds that

sy (x1) = y1 and 75, v (x2) = ya.

Here the intuition is that p(uw) should specify the amount of charge that should be pushed
out of the u-gadget via uw, for each uw € E(u).

Proof. Consider a function p : E(u) - Handlets : V x V — H be a redistribution on
G that moves ¢ to some vertex v and satisfies s(u, x) = #(u,x) ® p(ux), for all ux € E(u).
Observe that by definition, A, (ux) = s(u,x) = t(u,x) & p(ux) = Ay y(u,x) & p(ux).
Hence, A, = Aty @ p. Also observe that for any v/ € N(v), the map 75,7 acts on the outer
vertices in E(u) x H by
(u,,0) > (U, x, i ® Ag (ux)) = (1, %, 1 ® Apy (ux) ® p(ux)),
and acts on the inner vertices in Fy = I(u, yo(u)) by
f'_)f@As)u :feaAt)u @P.

Let P € P, ,, be a non-trivial block. Consider the following cases, according to the type of
p.

(T1) Suppose P = [[((u,x, 1), f)]]p,..,- Consider ((u,x,i1),g1) € Pand ((u,x, i), hy) €
Sftuw(P), where hy = g ® Ay, i = i1 ® Ay, (ux) and gi(ux) = g2(ux). In this case,
taking p := g, © g; will be sufficient, as 775,/ : g1 > Q1@ A1, & p = ©® Ay, = by, and

T[S,V,’V/ : (u) X, ll) g (u) X, il @ At’u(ux) (&) p(ux))
= (u,x, 12 ® (g2(ux) © g1(ux)))
= (u, x, 1),
for any v' € N(v), as required.

(T2) Suppose P = [[(x,f)]lp,..» where x € Y and f € F,. Consider (x,g) € P and
(71u(x), 820 Ary) € fruw(P). In this case, taking p := g, © g1 will be sufficient, with
an argument similar to above.

(T3) Finally, suppose P = [[(f, g)]]p,....» Where f, g € Fyand feg = h. Consider (fi, g1) € P
and (f2,22) € fruw(P), with o g1 = ,© g = h. It follows that , © fi = g, © g1.
Hence, it suffices to consider p := (, © fi) © At = (220 1) © Ap .

O]
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7.3.4 Game strategy

Let p and g be distinct primes and write H = Z/(gZ), as before. Consider k > 2 and let
d > 4 be an integer such that g¢?~2 = 1 (mod p). Finally, let G = (V, E, <) be an ordered
and connected d-regular graph that satisfies the conditions of Lemma [7.26] That is, in the
k-cops-and-robber game on G, the robber will always have a d-uniform strategy to evade
capture by the cops. By that same lemma, such a graph is guaranteed to exist.

In the following we put together the various technical results established previously and
describe a winning strategy for Duplicator in the k-pebble 2-ary rank partition game on
CY(G) and C§;(G) over GF,, with ¢ € H. This is trivial when ¢ = 0 so assume ¢ # 0. To
describe the game strategy, we will use an induction hypothesis which is stronger than the
necessary partial isomorphism claim. That is, we claim that Duplicator can play in such a way
that after each round in the game, (a) the map defined by the currently pebbled elements
on the two structures is a partial isomorphism and (b) there is a vertex u € V and an H-
redistribution t : V x V' — H on G for which it holds that:

M ye:=(87,,)" =05

Vmin

(ii) the bijection 7, : C;(G) — Cf;(G) induced by t respects the currently pebbled ele-
ments on the two structures; and

(iii) the robber player has a winning strategy in the k-cops-and-robber game on G, starting
with cops at positions vy, . . ., v, and robber at position u, where vy, ..., v,, denote the
vertices of G that correspond to those graph gadgets in C%(G) and C;(G) that contain
currently pebbled elements, m < I.

This induction hypothesis not only implies partial isomorphism but also comes with enough
conditions to enable us to describe an inductive winning strategy, as we will show.

Now suppose that at some round in the game, Spoiler picks up a pair of pebbles from C;(G)
and the corresponding pair of pebbles from Cf;(G). Letu € V.and t : V x V — H be objects
satistying the conditions of the induction hypothesis. If this is the first round of the game,
then let u = v, and let ¢ be the constant-zero function on V' x V. Consider an arbitrary
neighbour w of u and write m;, ,, to denote the bijection associated with ¢, u and w. Then
Duplicator responds to the challenge of Spoiler with partitions Py, ,, and Qy,,,,,,, and bijec-
tion ftuw : Py = Quu» as defined in By Lemma the triple (Pruw»> Qruws fruw)
satisfies the rank condition of the partition game, as required.

Suppose then that Spoiler next chooses a block P € P;,,, and places the two chosen
pebbles in C%(G) on a pair in P and places the corresponding two pebbles in C5(G) on
a pair in f . (P). By Lemma this placement of pebbles by the Spoiler will result in
positions that preserve the partial isomorphism. This satisfies condition (a) of the induction
hypothesis.

All that remains then is to show that, based on the resulting game positions, Duplicator
can construct a new transition function ¢ which will satisfy condition (b) of the induction
hypothesis. To do that, Duplicator initiates a k-cops-and-robber game on G, initially with the
robber on 1 and cops on vertices vy, ..., v, € V, corresponding to the pebbled positions over
CY(G) and C5(G) at the beginning of the round. That is, the vertices vy, . ..., v,, denote that
there are pebbles on CY;(G) in each of graph gadgets Xy (v1,0), ..., X (v, 0) and nowhere
else. The same holds for Cf,(G), as the pebbled positions respect the preorder <.
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Duplicator then moves the two cops corresponding to the pebbles chosen earlier by
Spoiler to the vertices on G that match the placement of pebbles on C%(G) and C,(G). By
assumption on G, this move by the cops yields d distinct paths Py, ..., P, all starting at u, for
the robber to move along to a vertex w. Here, each path P; goes from u via w; € N(u), where
we write N(u) = {w1,...,wy}. Let p : E(u) - H be a function as specified by Lemma [7.31]
Intuitively, the function p describes for each edge uw; € E(u) the amount of charge that
should be moved out of u via uw;, as noted earlier. This gives us a recipe for constructing a
new redistribution s, moving the ¢ units of charge from u to v, as follows:

o Firstly, for each path P;, i € [d], define a redistribution s; : V x V - H by s;(x, y) :=
p(uw;),if (x, y) € P, si(x, y) := —p(uw;), if (y,x) € P;, and s(x, y) := 0 everywhere
else. Note that s is well-defined in this way, as P; is a simple path. It can be seen that s;
moves p(uw;) units of charge from v to w, by following the path P; in G.

« By combining all the functions s;, we now obtain a redistribution s : V' x V.- H on
G, defined by

d
s(x,y) = Gz?si(x,y).

That is, s is obtained at each (x, y) € V x V by accumulating the charge moved from
x to y over all the auxiliary functions s;.

Since each P;, by assumption, does not go through any of the cop positions on G, it follows
that the H-redistribution s respects all the pebble positions on Cf;(G) and C;(G). In partic-
ular, s respects any pebble placement over non-trivial blocks, by Lemma 7.31] Furthermore,
we can see that y; = Jj,, by design, and the robber player will have a winning strategy in
the cops-and-robber game starting with the cops in their current position and the robber at
w. This shows that Duplicator has a strategy to play in such a way that the strong induction
hypothesis is satisfied at the end of each round, which concludes the proof of Theoremm

7.3.5 Axiomatisation of C-structures in FOR

We conclude this chapter by showing that for any graph G and prime g, the structures 5, (G)
and Cf;(G) can be distinguished in first-order logic with rank operators over GF, where we
write H = Z/(gZ). More precisely, we show that for every i € H there is a sentence of FOR 3
which defines the class CL over finite 7y-structures. Of course, this result by itself does not
conclude the proof of the main theorem of this chapter, which states there is a property of
finite structures which is definable in FOR,; but not in R, for any prime p # q. However,
we show that by slightly modifying our construction of C-structures (that is, by adding one
extra vertex), we get a class of structures that can be defined in FORg;; but not in R, for
any prime p # q.

Now let g be a prime and write H := Z/(qZ) for the group of integers modulo gq. As there
will be no need to distinguish between addition in H and addition in GF, below, we will
write H additively with operation +. Let G = (V,E,<) be an ordered connected graph,
where every vertex has degree at least two, and let y : V' — H be a charge function on G.
For v € V, we write I(v) := I(v,y(v)) for the set of inner vertices associated with v, and set
I(V) := Uyey I(v). For each ¢ € H, let Sy, ; ,, be a system of linear equations over GF; with
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variables x(,,,, ;) for all outer vertices (v, w, i) in Cy(G, y) and xy for all inner vertices f, in
Cu(G,y), and the following equations.

o Outer vertex equations. For each vw € E and all i, j € H we add the equation:
X (v,w,i) + X(wov,j) = i+ ]

o Inner vertex equations. For each f € I(v) we add the equation:

D Xwfow) = D, g

vweE(v) gel(v)

o Total charge equation. Finally, we add the following equation:

Xfr=2C.
>, Xy

fel(v)

This construction resembles the system of linear equations we described in for defining
the class of even Cai-Fiirer-Immerman graphs. In fact, it can be seen that the system we
described there is just a special case of the more general construction above, obtained by
taking g = 2. A similar argument to the one we gave in can be given to show that,
firstly, the system S, ; , is definable in FORy;3 over Cu(G,y) and, secondly, that Sh,G,y has
a solution over GF if and only if y(V') = c. Furthermore, it can be shown that the class of
structures Cgy := Cy; can be defined in first-order logic with counting, over the signature 7.
Together, this gives us the following result.

Theorem 7.32 (Definability in FORy). Let q be a prime and write H = Z./(qZ). Then for every
i € H, there is a sentence ¢; € FORy;3 which defines the class C;i over finite Ty-structures. [J

In the statement of Theorem[7.32} it seems that “arity three” is really a lower bound for defin-
ability in FORy, since we need at least two variables to index the set of equations in Sj; ; ..
To see this, note that the number of equations is one more than the number of vertices in
Cu(G,y). Therefore, in order to prove the main theorem of this chapter (Theorem [7.1)), it
becomes necessary to modify the construction of C-structures slightly, so that they become
definable in FOR, using only rank operators of arity two. This is shown in the proof below
of the main theorem, which we restate for convenience.

Theorem 71 (Main theorem). For all distinct primes p and g, there is a property of finite
structures which is definable in FOR, but not in R 5.

Proof. Consider a prime q and write H := Z/(qZ). Let G = (V, E, <) be an ordered con-
nected graph, where every vertex has degree at least two, and let y : V' — H be a charge
function on G. Consider the “augmented” structure C};(G, y) obtained by adding a single
vertex to Cy (G, y), disjoint from all edge and colour relations on Cy (G, y). We refer to this
additional (constant) vertex as ‘a’.

For ¢ € H, write Ax = b for the system of linear equations S}, ;; | defined as above. With
the help of the additional vertex a, it can be seen that the matrix A can be defined in first-
order logic over Cj;(G, y) by using only two variables. That is, the sets of outer vertex and
inner vertex equations can be indexed by the sets of outer and inner vertices, respectively, and
the total charge equation can be indexed by the vertex a. Furthermore, the matrix (A|b) can
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also be defined over C};(G, y) in first-order logic using only two variables; here, the vertex
a is used to index the column vector b in the augmented matrix. This shows that there is a
sentence of FOR, that is satisfied in C; (G, y) if and only if the system Sy, ; ., has a solution.

Furthermore, it can be seen that the addition of a single disjoint vertex does not affect the
isomorphism properties of C-structures and does not change Duplicator’s winning strategy
in the rank-partition game. Therefore, the statement of Theorem also holds for “aug-
mented” C-structures and the main theorem follows. O



Chapter 8

Conclusions and further research

In this thesis we have studied the descriptive complexity of various natural problems in linear
algebra. We conclude our discussion by recalling the major results established and discussing
possible areas for future study.

8.1 Summary of results

In the study of descriptive complexity there have been a number of examples [12,136,9] show-
ing that fixed-point logic with counting (IFPC) falls short of defining all polynomial-time
properties of finite structures. Most recently, it was shown that there is no sentence of IFPC
that can define the solvability of affine equations over any fixed finite Abelian group [4],
which is a natural problem in PTIME. By elementary linear algebra, this in turn shows that
IFPC is not able to define the rank of a matrix over a finite field.

To address this shortcoming of the logic, we defined inflationary fixed-point logic with
rank (IFPR), an extension of IFP with operators for expressing the rank of definable un-
ordered matrix relations over a finite field of prime cardinality. These operators have a sim-
ple and natural formalisation in the well-studied framework of two-sorted numerical struc-
tures that is used to formalise the counting operators in IFPC. Among our results on the
logic IFPR, we showed that it can define the solvability of systems of linear equations over
any finite field. Together with the fact that rank operators can simulate counting, this im-
plies that IFPR is strictly more expressive than IFPC. Furthermore, we showed that an even
weaker logic, the extension of first-order logic with rank operators (FOR), can already de-
fine two of the other problems that were constructed to separate IFPC from PTIME, which
are the problem of computing the parity of Cai-Fiirer-Immerman graphs and the problem
of deciding isomorphism of multipedes. These results illustrate that all known examples of
polynomial-time properties that are not definable in IFPC relate to the inability of the logic
to express basic properties in linear algebra.

We also studied the descriptive complexity of first-order rank logics over ordered struc-
tures. Specifically, we proved that for each prime p, FOR, captures MOD,L and that FORg
captures L1, which are natural complexity classes that characterise different levels of log-
arithmic space complexity. Here FOR, is the fragment of FOR that only has rank operators
over the prime field GF, and FOR is the extension of first-order logic by rank operators for
expressing the rank of rational-valued matrices.

138
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While all these results demonstrate the expressiveness of logics extended by operators for
defining matrix rank, it is of course possible that some other linear-algebraic property could
give rise to operators with the same, or even greater, expressive power. For instance, we could
alternatively have considered the extension of fixed-point logic with an operator for express-
ing the determinant of definable matrix relations, which is a natural matrix property that is
well-defined for square unordered matrices. However, one of our results is that this property
is already definable in IFPC for matrices over all finite fields, as well as the field of rationals
and the ring of integers. More generally, we showed that IFPC can define the characteristic
polynomial of any square matrix over these same domains. By similar techniques, we proved
that even the rank and the minimal polynomial of rational-valued matrices are expressible
in IFPC. It is therefore seen that the additional expressive power of the logic IFPR comes
specifically from the ability to define matrix rank over finite fields.

In order to delimit the expressive power of rank logics over finite structures, we devel-
oped game-based methods for proving non-definability results. The underlying games are
based on variations of Ehrenfeucht-Fraissé-style pebble games, which form an essential tool
for analysing expressiveness of other logics, such as IFP and IFPC. The game protocol that
we introduced is based on partitioning the game board into a number of disjoint regions,
according to some linear-algebraic criteria, which then limits the possible placement of peb-
bles on the board. This method of partitioning the game board turned out to be quite flexible
and we showed that it can be used to give a game description of logics equipped with any set
of generalised quantifiers.

In designing these pebble games, we had to take into consideration one important struc-
tural property that distinguishes IFPR from IFPC. It is well known that in the presence of
fixed-points, unary counting operators are sufficient to count tuples of any arity [23]]. On the
other hand, we showed that rank logics have a strict arity hierarchy with respect to rank oper-
ators, where the arity of a rank operator is the number of distinct variables that it binds. More
formally, writing IFPR ., and FOR,;, to denote the fragment of IFPR and FOR, respectively,
restricted to rank operators of arity at most m over GF, (with p prime), we showed that the
arity hierarchies FORp;; £ FORp;3 < ... and IFPR,, S TFPR;3 < ... are strict for each prime
p- One consequence of this is that the pebble game for IFPR that we defined had to take into
account the arity of the individual rank operators, in addition to other parameters such as
the number of variables.

Finally, we studied the extent to which the expressive power of rank operators depends
on the characteristic of the underlying prime field. As a part of that study, we proved that for
all distinct primes p and g, IFPR,, # IFPR;, over finite structures. The proof of this result
combines linear algebra with an application of the partition-based game method developed
earlier, played on a pair of highly symmetric combinatorial structures.

8.2 Future work

Our results in this thesis show that fixed-point rank logic IFPR, and more generally IFPRy,,
is strictly more expressive than IFPC while still having polynomial-time data complexity. In
symbols, IFPC g IFPR < IFPR,, £ PTIME. Despite these results, we do not have any reason
to believe that either IFPR or IFPRy,, captures polynomial time on all finite structures. How-
ever, we do believe that in order to answer the question whether there is a logic for PTIME,
it is crucial to understand in a logical context many of the natural problems in linear algebra
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in general and matrix rank in particular. This really amounts to understanding the logical
complexity of Gaussian elimination, a fundamental polynomial-time algorithm which plays
a key role in a number of important applications.

A key step in understanding the expressibility of rank operators is to characterise the rela-
tionship between first-order rank logics and fixed-point rank logics. While we do believe
that FOR £ IFPR, currently this is an open problem. Another open problem is to prove the
separation IFPR,,, # IFPR,,, for all arities m > 2 and all distinct primes p and g, which
would imply that IFPR, # IFPR, over finite structures. Already we proved this for m = 2
(Corollary[72). To extend that proof for all m > 2, it remains to “lift” the set partitions and
the associated transformation matrices to all arities. But as seen from our proof in Chap-
ter [7, the direct construction for arity two is already quite involved and so it seems that a
more abstract algebraic argument is needed for the lifting to higher arities.

Another possible way to prove that IFPR,, # IFPR, over finite structures, without going
through the messy business of constructing higher-arity matrices, is to show that the arity hi-
erarchy for rank logics collapses over graphs, say. Recall that our proof showing the strictness
of the arity hierarchy is based on a construction of Hella. This construction shows that for
each n > 1, there is a vocabulary 7, and a class of finite 7,;-structures which is decidable
in polynomial time but not definable by any sentence of £“(Q,,), finite-variable infinitary
logic extended by all generalised quantifiers of arity n. Crucially, it can be seen that the vo-
cabulary 7,,; depends on the integer # and, in particular, contains relation symbols of arity
n + 1. It is therefore possible that over a fixed signature, such as the language of graphs, the
rank arity hierarchy collapses to a fixed level. In particular, if it can be shown that the arity
hierarchy over C-structures collapses to its second level, then the separation IFPR,, # IFPR,
over finite structures will follow by Theorem

There are also further unanswered questions in relation to the partition-based pebble games
that we defined. In particular, to what extent can we simplify the rules of the rank-partition
game? As discussed above, the winning strategy for Duplicator we describe in Chapter[7)is
rather complicated and yet it only considers the simplest case, when all matrices are defined
by formulae of arity two. Even so, it can be seen from the description of that strategy that
it actually takes a very particular form. That is, to show that at every round in the game
Duplicator can respond to each challenge of Spoiler with valid set partitions, we explicitly
construct a single invertible linear map, and show that this map takes each matrix obtained by
labelling one partition to the corresponding matrix over the other partition. In other words,
we demonstrate that the two families of matrices defined over the pair of partitions (indexed
by the class of all suitable labellings over GF,) are simultaneously similar. Clearly, the ex-
istence of such an explicit map is always sufficient for Duplicator to win the rank partition
game, but can it be shown that this condition is also necessary? If that was the case, then the
resulting game would bear a strong resemblance to the bijection game of Hella for infinitary
counting logics, where instead of bijections we would have invertible linear maps.

Another possible game-related study is to consider the general partition game, which we
defined to characterise definability in logics equipped with any set of generalised quantifiers.
Clearly, such games in general will be quite complicated to play. One possible direction of
future study is therefore to identify well-behaved families of generalised quantifiers, leading
to tractable cases of the partition game.
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Yet another direction of research is to study classes of structures possessing natural polynomial-
time properties that are not known to be in either IFPC or IFPR. One example that has been
extensively studied is the problem of determining whether a given graph has a perfect match-
ing. It is known [9]] that there is a sentence of IFPC that defines this property on bipartite
graphs, but it is not known whether or not it can be defined in either IFPC or IFPR on general
graphs. Recently, there have been some results relating questions about graph matching to
linear algebra. For instance, Hoang, Mahajan and Thierauf [40] considered the complexity
of the unique perfect matching problem on bipartite graphs, where the problem is to deter-
mine whether there is precisely one perfect matching in a given graph G. Hoang et al. show
that on bipartite graphs, this problem can be reduced to questions about the characteristic
polynomial of certain matrices. It can be seen, using our results in this thesis, that this con-
struction can be defined by a formula of IFPC over any bipartite graph G. It follows that the
unique perfect matching problem on bipartite graphs is definable in IFPC while for general
graphs definability is not known.

It would also be interesting to investigate the relationship of IFPR with other logics which
extend IFPC while remaining inside polynomial time. Here the main candidate is the logic
choiceless polynomial time (CPT), which was defined by Blass, Gurevich and Shelah [8] in an
attempt to characterise how much one can express in a logic which explicitly avoids arbitrary
choice. This logic is formally defined by a programming language, interpreted within a time-
restricted, high-level machine model which forbids unrestricted choice. While the logic CPT
is strictly more expressive than fixed-point logic [8], there are still quite simple polynomial-
time queries which it cannot express. To overcome this limitation, Blass et al. [9]] introduced
CPTGC, an extension of CPT with a counting operator, which subsumes IFPC. It was shown by
Dawar et al. [21] that CPT, and hence CPTC, can define the parity of Cai-Fiirer-Immerman
graphs. To date, it is not known whether CPTC or any other variant of CPT captures all
of PTIME. In particular, it remains an open question whether the rank of a matrix can be
computed or the solvability of systems of linear equations determined in CPTC. Indeed, an
inclusion either way between IFPR and CPTC is unknown.

Finally, it remains to investigate how solvability of linear equations over a finite field fits
more generally with solvability of linear equations over a finite Abelian group. In fact, we
don’t even know whether IFPR can define solvability of linear equations over a finite ring.
Here the basic question seems to be this: for a prime p and integer m > 1, is solvability of
linear equations modulo p™ definable in IFPR,? By “linear equations modulo p™”, we mean
a matrix equation Ax = b mod p™, where the elements of the matrix A and the column
vector b are integers. In other words, we are interested in solvability of linear equations over
thering Z,m := Z[(p™Z). When m = 1then Z,, = GF, and we can define solvability of linear
equations over Z, in FOR,, by Theorem However, when m > 1 then Lpm ¢ GFpm and
it is not known whether IFPR,, can define solvability over such domains. It can be seen that
this question can be further reduced to questions concerning feasibility of linear Diophantine
equations. That is, a linear system Ax = b has a solution in Z,n if and only if Ax+ p™y = b has
a solution in Z, where y is a column vector of the same dimension as x. Can it be shown that
IFPR has the expressive power to define feasibility of Diophantine equations of this form?
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