
bjarki holm

DESCRIPTIVE COMPLEXITY

OF LINEAR ALGEBRA

disseration submitted for the

degree of doctor of philosophy

university of cambridge

magdalene college

2010



To the memory of my mother



Declaration

�is dissertation is the result of my own work under the supervision of

Professor Anuj Dawar of the University of Cambridge Computer Labo-

ratory. It includes nothing which is the outcome of work done in collab-

oration except where speci�cally indicated in the text.

�is dissertation does not exceed the regulation length of 60,000 words,

including tables and footnotes.



Summary

An important open question that has motivated a lot of work in �nite model theory is that of

�nding a logical characterisation of polynomial-time computability (PTIME). Most attempts

to answer this question have focused on �nding suitable extensions of �rst-order logic that

can describe exactly all properties decidable in PTIME. In this way, Immerman and Vardi

independently showed that on inputs equipped with a linear order, in�ationary �xed-point

logic (IFP) expresses exactly the properties in PTIME. In the absence of an order, IFP is too

weak to express all properties in PTIME. In particular, it fails to de�ne very simple cardinality

properties. �is is easily solved by extending the logic with counting terms, which gives us

in�ationary �xed-point logic with counting (IFPC), which was at one time conjectured to be

a logic for PTIME. However, Cai, Fürer and Immerman later showed that this logic still falls

short of capturing PTIME. Since this result, a number of examples have been constructed

of polynomial-time decidable properties that are not expressible in IFPC. Most recently, it

was shown that the problem of determining the solvability of a�ne equations over any �xed

�nite Abelian group is not de�nable in this logic. In particular, this implies that over �nite

�elds IFPC is not able to expressmatrix rank.

To address this de�ciency, we de�ne an extension of IFP by operators for expressing the rank

of de�nablematrix relations over �nite �elds. We show that the resulting logic IFPR is strictly

more expressive than IFPC. In fact, we show that an even weaker logic, the extension of �rst-

order logic with rank operators (FOR), can already de�ne many of the properties used to

separate IFPC from PTIME, such as solvability of linear equations and the property de�ned

byCai et al. Over the class of ordered structures, we characterise the descriptive complexity of

�rst-order rank logics and show that they correspond to natural logspace complexity classes.

Moreover, we show that the rank logics FOR and IFPR have a strict arity hierarchy, where

the arity of a rank operator is the number of distinct variables that it binds.

We also study the extent to which IFPC can express linear algebra. We show that IFPC

can de�ne the characteristic polynomial (and hence determinant) of any matrix over a �nite

�eld, over the ring of integers or over the �eld of rational numbers. Moreover, we show that

for rational-valued matrices, IFPC can already de�ne the rank and the minimal polynomial.

It is therefore seen that the additional expressive power of the logic IFPR comes speci�cally

from the ability to de�ne matrix rank over �nite �elds.
Finally, we show that equivalence in logics with rank operators can be characterised in

terms of pebble games based on set partitions. �is gives us a game-basedmethod for proving

lower bounds for FOR and IFPR. As an illustration of the game method, we establish that

over �nite structures, IFPRp;2 ≢ IFPRq;2 for distinct primes p and q, where IFPRp;m is the
restriction of IFPR that only has operators for de�ning rank of matrices of arity at most m
over the �nite �eld GFp.
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Chapter 1

Introduction

Computational complexity theory is the programme of classifying computational problems

based on how di�cult they are to solve. In this context, complexity is measured by the

amount of resources required by a computation, such as running time, memory, number

of processors, and other measurable quantities of the computational model. From this study

one formally de�nes classes of problems of related complexity such as PTIME, the collection

of all decision problems that can be solved by deterministic polynomial-time algorithms.

An alternative way of analysing the di�culty of solving computational problems is to ap-

ply techniques from logic and �nite model theory. In the study of descriptive complexity,

instead of considering the di�culty of deciding whether an input possesses a property, one
studies the richness of the least logic needed to de�ne that property. �ese two measures of
complexity—the hardness of computation versus logical expressibility—turn out, in many

cases, to be equivalent.

�e study of descriptive complexity was essentially initiated by the work of Fagin [26],

who showed that a class of �nite relational structures is decidable in non-deterministic poly-

nomial time (NP) if and only if it is de�nable in the existential fragment of second-order

logic. �is naturally raises the question whether there is a similar logical characterisation of

PTIME. Speci�cally, is there a logic in which a class of �nite structures is expressible if and

only if membership in the class is decidable in deterministic polynomial time? �is question

is still wide open and is considered to be one of the main open problems in both �nite model

theory and database theory.

1.1 Is there a logic for PTIME?

�e question whether there is a logic that captures polynomial time was �rst raised by Chan-

dra and Harel [13] in the context of database theory and later reformulated by Gurevich [35]

who also stated the conjecture that no such logic exists. It asks for a logic, satisfying some

basic technical requirements, in which precisely those properties of �nite structures which

are decidable in polynomial time are de�nable. �e details of these technical requirements

are not important in this context; essentially, the idea is to rule out the possibility of taking

an arbitrary collection of properties (for instance, the set of all polynomial-time decidable

properties) and letting that constitute a logic.

�e programme of seeking a logic for PTIME is of fundamental theoretical signi�cance,

as it aims to characterise the structure of both logics and complexity classes. However, much

1



1.1. Is there a logic for PTIME? 2

of the research in this area has also beenmotivated by applications in database theory. �is is

because a concrete logical characterisation of polynomial time would give rise to a database

query languagewhich could express precisely all the feasible database queries (that is, queries

decidable in polynomial time). �is was partly the motivation behind the work of Chandra

and Harel and research in this area remains active to date (see for instance Nash, Remmel

and Vianu [57] for new insights).

Most attempts to construct a logic for PTIME have focused on �nding suitable extensions

of �rst-order logic. It is easy to show that every class of structures de�ned by a �rst-order

sentence is decidable in polynomial time. Similarly, it is not hard to show that there are

polynomial-time properties that are not de�nable in this way. Speci�cally, it can be shown

that �rst-order logic lacks the ability to express any non-trivial property based on recursion,
such as transitive closure. �us, a logic to capture PTIME must extend the expressive power

of �rst-order logic with the power to de�ne polynomial-time inductive properties.

In�ationary �xed-point logic (IFP) is a logic that combines �rst-order logic with the abil-

ity to formalise inductive de�nitions. By a result proved independently by Immerman [44]

and Vardi [65], it is known that this logic expresses exactly the polynomial-time properties

of ordered �nite structures. Here, an ordered structure is a structure whose signature con-
tains a special binary relation symbol ≤ that is interpreted as a total linear ordering of the
underlying domain. Despite this result, IFP is too weak in the absence of ordering to express

all polynomial-time properties. In particular, it fails to de�ne very simple cardinality prop-

erties, such as whether the domain of a structure has an even number of elements. Clearly

this property of “evenness” is decidable in polynomial time by a simple counting procedure.

Various attempts have been made to extend �xed-point logic with new arithmetical or

logical features, in the hope of �nding a logic which captures PTIME on all �nite structures.

In [44, 45], Immerman suggested adding a mechanism for counting to the logic IFP. Count-
ing, apart from being a fundamental operation in numerous algorithms, exempli�es the lim-

itations of �xed-point logic, as mentioned above. �e resulting logic, in�ationary �xed point

logic with counting (IFPC), has been intensively studied over a number of years [58] and

was at one time conjectured by Immerman to be a logic for PTIME (for further details, see

[12]). �is logic has been shown to capture polynomial time onmany natural classes of struc-

tures, including planar graphs and structures of bounded tree-width [30, 32, 34, 46]. Most

recently, it was shown by Grohe [33] that IFPC captures polynomial time on all classes of

graphs with excludedminors, a result that generalises many of the previous partial capturing

results. Furthermore, it can be shown that IFPC captures polynomial time on “almost all”

�nite structures in a precise technical sense [38].

Despite the many promising results, Immerman’s conjecture was ultimately refuted by

Cai, Fürer and Immerman [12], who constructed a query on a class of �nite graphs that

can be de�ned by a polynomial-time computation but not by any sentence of IFPC. Since

then, other constructions that expose the limitations of IFPC have been given. Gurevich and

Shelah [36] de�ned a class of �nite rigid structures known as multipedes, and considered
the task of uniformly de�ning a linear order over this class. �ey showed that this task,

while computable in polynomial time, is not expressible by any �xed formula of IFPC. Blass,

Gurevich and Shelah [9] later turned this construction into a decision problem and proved

that IFPC is not able to tell whether two given multipedes (each with a designated vertex)

are isomorphic or not; a problem which again is decidable in polynomial time.
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Even though thework ofCai et al. shows that IFPC falls short of capturing PTIMEon all �nite

structures, it can be argued that the graph query used in their construction is very arti�cial.

�e same can be said of the examples constructed by Gurevich and Shelah. �erefore, it was

o�en remarked that possibly all natural polynomial-time properties of �nite structures were
still de�nable in IFPC. Recently, however, it was shown by Atserias, Bulatov and Dawar [4]

that solvability of a�ne equations over any �xed �nite Abelian group is not de�nable by any

sentence of IFPC. In particular, this implies that IFPC is not expressive enough to de�ne

solvability of systems of linear equations over a �xed �nite �eld; a problem which is easily
decidable in polynomial time by Gaussian elimination. �is gives an example of a natural

problem in PTIME that is not expressible in IFPC.

1.2 �e importance of linear algebra

In recent years, various studies have pointed to the importance of linear algebra over �nite

�elds in marking the boundaries of logically-de�ned fragments of polynomial time. In [9],

Blass, Gurevich and Shelah studied the problem of determining whether a square matrix has

determinant zero (that is, determining whether or not a matrix is singular). �ey showed

that for matrices over �nite �elds, this problem can be de�ned in IFPC but not in IFP. It

was later observed by Rossman [7] that the actual value of the determinant of a matrix over

a commutative ring of characteristic zero can be de�ned in the language of choiceless poly-

nomial time with counting, which is another logic that has been studied as a candidate for

capturing PTIME and subsumes IFPC. Blass and Gurevich [7] used this observation to show

that the same logic can also express the determinant of any matrix over a �nite �eld.

Another important problem in linear algebra is the problem of determining the solvabil-

ity of a systemof linear equations. Atserias, Bulatov andDawar [4] showed that the solvability

of a�ne equations over any �xed �nite Abelian group is not de�nable in IFPC, as mentioned

above. In particular, this shows that IFPC is not expressive enough to de�ne solvability of

linear equations over a �xed �nite �eld. Recall that by elementary linear algebra, a system of

linear equations Ax = b over a �eld is solvable if and only if rank(A ∣ b) = rank(A), where
(A ∣ b) is the matrix obtained from A by adding the column vector b on the right. �is
immediately shows that IFPC is not expressive enough to de�ne the rank of a matrix over a
�nite �eld.

Of course, it can be seen that for all the linear-algebraic problems mentioned — deter-

mining solvability of linear equations, computing determinant or computing rank — there

are well-known polynomial-time algorithms, such as Gaussian elimination. Since �xed-

point logic is known to capture PTIME on the class of �nite ordered structures, it follows

that IFP and IFPC can already de�ne each of these problems when given matrices indexed

by ordered sets. �erefore, our interest is speci�cally in unordered matrices, whose rows and
columns are indexed by arbitrary unordered sets.

More formally, we can view an unordered I × J matrix M over a �eld F as a function
M ∶ I × J → F, where I and J are �nite non-empty sets that index the set of rows and the
set of columns ofM, respectively. By taking I = {1, . . . ,m} and J = {1, . . . , n} we obtain the
more familiar notion of an m × n matrix; that is, a rectangular array of scalar values from F,
with m rows and n columns that are ordered by the natural ordering of the integers. Most
natural matrix properties from linear algebra, such as determinant and rank, are invariant

under simultaneous permutation of the rows and columns of the matrix and are therefore



1.3. Contributions of this thesis 4

well-de�ned for matrices indexed by unordered sets. �is is because these matrix properties

are in fact properties of the underlying linear map that the matrix represents and the linear

map is invariant under a permutation of the chosen vector space bases.

1.3 Contributions of this thesis

�e results mentioned above illustrate that IFPC is unable to express some quite natural

linear-algebraic properties, such as solvability of linear equations over a �nite �eld. �is

suggests that problems in linear algebra might be a possible source of new extensions to

�xed-point logic, in an attempt to �nd a logical characterisation of PTIME. In this thesis we

follow this line of inquiry by systematically studying the descriptive complexity of various

polynomial-time problems in linear algebra.

�e main body of this thesis consists of six chapters. A�er reviewing some preliminaries in

Chapter 2 we consider in Chapter 3 the extent to which IFPC can express linear algebra. By

the work of Atserias et al. [4] we know that the rank of matrices over �nite �elds is not de�n-

able by any sentence of IFPC. However, we show that many other natural matrix properties

are in fact de�nable in this logic. Speci�cally, we show that IFPC can de�ne the characteristic

polynomial (and hence determinant) of anymatrix over a �nite �eld, over the ring of integers

or over the �eld of rational numbers. Moreover, we show that for rational-valued matrices,

IFPC can already de�ne the rank and the minimal polynomial.

�ese results establish that the inability to de�nematrix rank over �nite �elds is a funda-
mental barrier that separates IFPC from PTIME, just like the inability to count is a funda-

mental property that separates IFP from PTIME. In fact, computing rank can be understood

as a generalised form of counting which counts the dimension of a de�nable vector space

rather than the cardinality of a de�nable set. �is suggests that the key weakness of IFPC is

that the form of counting it incorporates is too weak. To address this de�ciency, we de�ne in

Chapter 4 an extension of in�ationary �xed-point logic by operators for expressing the rank

of de�nable matrix relations over �nite �elds of prime cardinality. �e resulting logic IFPR

is at least as expressive as IFPC. �is is because counting can be simulated by rank operators

using the observation that the rank of a diagonal matrix is precisely the number of non-zero

entries along the main diagonal. Furthermore, we show that IFPR can de�ne solvability of

linear equations over any �nite �eld. Together with the fact that IFPR has polynomial-time
data complexity (that is, the queries it de�nes can be decided in PTIME), we establish that

IFPC ≨ IFPR ≦ PTIME. �is illustrates that IFPR is a candidate logic for PTIME. Finally,
we show that rank logics have a strict arity hierarchy, where the arity of a rank operator is

the number of distinct variables that it binds. �is contrasts IFPR with the counting logic

IFPC, for which it can be shown that unary counting operators su�ce to de�ne counting in

any arity [23]. For instance, a counting term #xyφ(x , y), expressing the number of pairs that
satisfy the formula φ(x , y), is equivalent to the term

∑
x
#yφ(x , y),

which can be de�ned by a formula of IFPC.

To understand the inherent expressive power of rank operators, we study such operators

in the presence of weaker logics in Chapter 5. First-order logic with rank (FOR) is the ex-

tension of �rst-order logic by rank operators over �nite �elds of prime cardinality. Despite
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lacking the ability to formalise inductive de�nitions, it turns out that this logic is quite ex-

pressive. In particular, we show that two of the examples showing that IFPC ≨ PTIME—the
problem of deciding the graph query of Cai, Fürer and Immerman and the problem of de-

ciding isomorphism of multipedes—are both de�nable in FOR. �is result illustrates that

these two examples are really just clever ways of encoding systems of linear equations into

complex combinatorial structures. We also consider the descriptive complexity of �rst-order

rank logics over ordered �nite structures by proving that for each prime p, FORp captures
MODpL and that FORQ captures L

C=L, which are natural complexity classes that characterise

di�erent levels of logarithmic space complexity. Here FORp is the fragment of FOR that only
has rank operators over the prime �eld GFp and FORQ is the extension of �rst-order logic
by rank operators for expressing the rank of rational-valued matrices.

In Chapter 6 we develop Ehrenfeucht-Fraïssé-style pebble games for rank logics, which

gives us a game-based method for proving inexpressibility results for FOR and IFPR. �e

game protocol that we introduce is based on partitioning the game board into a number of

disjoint regions, according to some linear-algebraic criteria, which then limits the possible

placement of game tokens on the board. �is method of partitioning the game board turns

out to be quite �exible and can be used to give a game description of a very generic family of

logics, as we illustrate.

In Chapter 7 we establish the �rst inexpressibility results for rank logics. Writing IFPRp;m
to denote the fragment of IFPR restricted to rank operators of arity at most m over GFp,
with p prime, we show that for all distinct primes p and q, IFPRp;2 ≢ IFPRq;2 over �nite
structures. �e proof of this result combines linear algebra with an application of the game

method developed earlier, played on a pair of highly symmetric combinatorial structures.

Finally, we conclude our discussion in Chapter 8 by summarising our major results and

highlighting some of the open problems and future work in this area.

1.4 Previously published work and collaborations

�e work in several chapters of this thesis was done in collaboration and we conclude this

introduction by acknowledging these contributions.

�e de�nition and initial study of rank logics arose through collaboration with Bastian

Laubner, Anuj Dawar and Martin Grohe, and was presented at the 24th IEEE Symposium

on Logic in Computer Science [17]. Parts of this work appear in Chapter 3 (de�nability of

the characteristic polynomial over Z, Q and prime �elds; de�nability of matrix rank over
Q), Chapter 4 (de�nition of rank operators and rank logics; solvability of linear equations
given by terms or formulae; de�nability of deterministic and symmetric transitive closure

operators; arity hierarchy of rank logics for characteristic two) and Chapter 5 (de�nability of

the CFI graph query; capturing result for MODpL on ordered structures).
An introduction to the rank-partition games was presented jointly with Anuj Dawar at a

workshop on Logical Approaches to Barriers in Computing and Complexity [18] and a more

general overview was also included in a chapter in Studies in Weak Arithmetics [19], which
was also co-authored with Anuj Dawar.



Chapter 2

De�nitions and preliminaries

In this chapter we provide the necessary background from mathematical logic, matrix the-

ory, algebra, and complexity theory. Apart from §2.8, where we introduce matrices indexed

by unordered sets, all the de�nitions we consider are standard. Readers familiar with the

material might therefore only want to refer back to individual de�nitions at a later point.

2.1 Basic notation

We write N and N0 for the positive and non-negative integers, respectively. For m, n ∈ N0,
let [m, n] ∶= {l ∈ N0 ∣ m ≤ l ≤ n} and [n] ∶= [1, n]. We o�en denote tuples (v1, . . . , vk) by v⃗
and denote their length by ∥v⃗∥. It is assumed that the components of a k-tuple are indexed
from 1, . . . , k. If v⃗ = (v1, . . . , vk) is a k-tuple of elements from a set X, i ∈ [k] and w ∈ X,
then we write v⃗ w

i for the tuple obtained from v⃗ by replacing the i-th component with w;
that is, v⃗ w

i = (v1, . . . , vi−1,w , vi+1, . . . , vk). �is notation can be extended to describe the
replacement of more than one component, so for instance v⃗ w

i
u
j ∶= (v⃗ w

i )
u
j for u,w ∈ X and

i , j ∈ [k]. If i⃗ = (i1, . . . , im) ∈ [k]m is a tuple of distinct integers, m ≤ k, then we write x⃗ ↾ i⃗
to denote the m-tuple (xi1 , . . . , xim).
If x⃗ = (x1, . . . , xn) and y⃗ = (y1, . . . , ym) are tuples of elements, then we o�en write x⃗ ∪ y⃗

to denote the set of elements {x1, . . . , xn , y1, . . . , ym}.

If X is a set, then we write ℘(X) to denote the power set of X; that is, the set of all subsets of
X. Similarly, we write ℘�n(X) to denote the set of all �nite subsets of X.

2.2 Logics and structures

A vocabulary (also called a signature or a language) τ is a �nite sequence of relation and
constant symbols (R1, . . . , Rk , c1, . . . , cl). Every relation symbol Ri has a �xed arity ari(Ri) ∈
N. We consider both vocabularies that contain no constant symbols as well as vocabularies
that contain no relation symbols; the empty vocabulary is one particular example. If σ and τ
are vocabularies, then we write σ ⊆ τ to denote that every relation and constant symbol that
appears in σ also appears in τ.

6
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2.2.1 Structures

Let τ be a vocabulary. A τ-structure A = (U(A), RA
1 , . . . , RA

k , c
A
1 , . . . , cAl ) consists of a non-

empty set U(A), called the domain of A, together with relations RA
i ⊆ U(A)ari(R i) and con-

stants cAj ∈ U(A) for each 1 ≤ i ≤ k and 1 ≤ j ≤ l . �e elements of the set U(A) are called the
elements of A and we de�ne ∥A∥, the cardinality of A, to be the cardinality of U(A).
If τ and σ are vocabularies with σ ⊆ τ, andA is a τ-structure, then we writeA∣σ to denote

the σ-reduct of A, which is the structure obtained from A by forgetting the interpretations
of the symbols and constants that are in τ but not in σ .
Unless otherwise stated, all structures are assumed to be �nite. We write �n[τ] for the

class of all �nite structures of vocabulary τ. Following Otto [58], we also consider �nite
structures with an additional tuple of parameters. We denote the class of all τ-structures
with �xed tuples of r ∈ N parameters by:

�n[τ; r] ∶= {(A, a⃗) ∣ A ∈ �n[τ], a⃗ ∈ U(A)r}.

2.2.2 Logics

A logic L consists of amapping that assigns for each vocabulary τ a set of formulae L[τ], and a
satisfaction relation ⊧L between structures and formulae (possibly with an assignment to any
free variables, as we discuss inmore detail below). We do not require a formal de�nition of ‘a

logic’ here as we merely use the term in the abstract to generalise some common de�nitions

that apply to the speci�c logics we consider in this dissertation; for instance, �rst-order and

in�ationary �xed-point logic1.

We recall the de�nition of �rst-order logic (FO). A term of �rst-order logic over a sig-
nature τ is either a symbol from some countable collection of (�rst-order) variables, or a
constant symbol from τ. We de�ne the set FO[τ] of �rst-order formulae over τ to be the
smallest set containing the atomic formulae, ti = t j and R(t1, . . . , tm), where each ti is a
term and R a relation symbol from τ of arity m, which is closed under the operations of
negation, conjunction, disjunction and universal and existential quanti�cation. All the log-

ics we consider herea�er will be extensions of �rst-order logic, de�ned via explicit rules for

formula-formation and matching rules for semantics.

In general, we consider logics whose formulae may contain both �rst-order and second-

order variables (also called relation variables), where each second-order variable has a pre-
scribed arity. We commonly use lower-case letters x , y, z, . . . to denote �rst-order vari-
ables and use upper-case letters X ,Y , Z , . . . to denote second-order variables. We write
free(φ) to denote the set of free variables of φ, where φ is a formula of a logic L. For a
tuple φ⃗ = (φ1, . . . , φk), where each φi is a formula, we write free(φ⃗) ∶= ⋃k

i=1 free(φi). A
formula without free variables is a sentence. We commonly annotate formulae with tuples of
variables φ(x1, . . . , xk , X1, . . . , Xl) to indicate that all the variables x1, . . . , xk and X1, . . . , Xl
are distinct and that free(φ) ⊆ {x1, . . . , xk , X1, . . . , Xl}. �e same notation applies in exactly
the same way to terms of L.

Remark. �roughout, we commonly write (x ≠ y) as a shorthand for the formula ¬(x = y).
1
�estudy of abstract extensions of �rst-order logic is known as abstractmodel theory. �is �eldwas initiated

by Lindström [55], whose aim was to develop a single concept whose instances would be the various known

extensions of �rst-order logic, such as in�nitary logic and logics with inductive de�nitions. Formore background

on abstract model theory, see e.g. Barwise and Feferman [6].
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2.2.3 Assignments

Let τ be a vocabulary and let A be a τ-structure. An assignment in A is a function α that
associates an element α(x) ∈ U(A) with each �rst-order variable x and associates an n-ary
relation α(X) ⊆ U(A)n with each second-order variable X of arity n. Intuitively we think of
α as assigning the meaning α(x) to a variable x. We extend α to a function over terms by
setting α(c) = cA for each constant symbol c ∈ τ. We also let α(x⃗) ∶= (α(x1), . . . , α(xk)) for
a k-tuple of variables x⃗ = (x1, . . . , xk). Finally, if a⃗ ∈ U(A)k , then we write α a⃗

x⃗ to denote the
assignment obtained by setting xi ↦ ai , for i ∈ [k], and y ↦ α(y) for all y ∉ {x1, . . . , xk}.

�e semantics of a logic L over τ-structures is de�ned over pairs (A, α), where A is a
τ-structure and α is an assignment in A. We write A ⊧L φ[α] to denote that A satis�es the
formula φ under the assignment α. Of course, the exact de�nition of the relation ⊧L depends
on the logic in question; as an example we note that for all the logics that we consider, an

atomic formula Rx⃗ is satis�ed in A if α(x⃗) ∈ RA. When the logic L is clear from the context,

we omit the subscript to the satisfaction relation. Suppose free(φ) ⊆ x⃗ ∪ X⃗, where x⃗ =
(x1, . . . , xk) and X⃗ = (X1, . . . , Xl) are tuples of �rst- and second-order variables, respectively.
If a⃗ = (a1, . . . , ak) are elements from U(A) and R⃗ = (R1, . . . , Rl) are relations over U(A),
with Ri ⊆ U(A)ari(X i), then we write

A ⊧ φ[a1/x1, . . . , ak/xk , R1/X1, . . . , Rl/Xl],

or A ⊧ φ[a⃗/x⃗ , R⃗/X⃗] for short, to denote that φ is satis�ed in A by assigning ai for xi and
R j for X j, for each i and j. O�en we omit the named variables when they are clear from the
context, and simply write A ⊧ φ[a⃗, R⃗]. Finally, when free(φ) = ∅ then we write A ⊧ φ to
denote A ⊧ φ[∅].

We write

φ(x⃗)A ∶={a⃗ ∈ U(A)∥x⃗∥ ∣ A ⊧ φ[a⃗]} ⊆ U(A)∣x⃗∣

to denote the relation de�ned by a formula φ(x⃗) in a structure A, where free(φ) ⊆ x⃗. Simi-
larly, we write

t(x⃗)A ∶= {(a⃗, t[a⃗]A) ∣ a⃗ ∈ U(A)∥x⃗∥} ⊆ U(A)∣x⃗∣+1

to denote the graph of the function de�ned by a term t(x⃗) in a structureA, where free(t) ⊆ x⃗.
We also consider relations de�ned by omitting named variables from a particular assignment

over a structure A. Let φ(x⃗) be a formula of L[τ], where x⃗ is a k-tuple of variables. For an
integer m ≤ k, consider an m-tuple i⃗ = (i1, . . . , im) ∈ [k]m of distinct elements, indexing
variables in x⃗. �en for each �nite τ-structure A and k-tuple a⃗ of elements from U(A),
de�ne

φ[a⃗]A ↾ i⃗ ∶= {(c1, . . . , cm) ∈ U(A)m ∣ A ⊧ φ[a⃗ c1
i1⋯

cm
im ]}

We can also de�ne t[a⃗]A ↾ i⃗ for an L-term t completely analogously.

2.2.4 De�nable classes and queries

If φ is a sentence in vocabulary τ, then we write

Mod(φ) ∶= {A ∣ A ∈ �n[τ] and A ⊧ φ}

to denote the class of �nite models of φ.
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De�nition 2.1 (De�nable classes of structures). Let τ be a vocabulary and let L be a logic.
A class K of �nite τ-structures is said to be de�nable in L if there is a sentence φ ∈ L[τ] for
which it holds that Mod(φ) = K. ∎

We also consider queries de�ned by formulae. �e following de�nition is adapted from
Libkin [52].

De�nition 2.2 (Queries). An m-ary query, m ≥ 0, on τ-structures is a mapping Q that
associates with every A ∈ �n[τ] a subset of U(A)m and is closed under isomorphisms; that
is, ifA and B are �nite τ-structures with f ∶ A ≅ B an isomorphism, then Q(B) = f (Q(A)).
We say that anm-ary queryQ over τ-structures is L-de�nable if there is an L[τ]-formula

φ(x⃗) with ∥x⃗∥ = m, such that for every A ∈ �n[τ]:

Q(A) = φ(x⃗)A = {a⃗ ∈ U(A)m ∣ A ⊧ φ[a⃗]}.

∎

It is o�en convenient to consider nullary (that is, 0-ary) queries separately. In that case we

naturally identify nullary relations with Boolean values; that is, we considerU(A)0 as a one-
element set which has only two subsets, which we identify as true and false. In this sense, a
nullary quary on τ-structures is a mapping Q ∶ �n[τ] → {true, false} which is closed under
isomorphism; that is, ifA andB are �nite τ-structures withA ≅ B, thenQ(B) = Q(A). Such
queries are known as Boolean queries.
We commonly associate a Boolean queryQ on τ-structureswith the isomorphism-closed

class of �nite structures CQ de�ned by

CQ ∶= {A ∈ �n[τ] ∣ Q(A) = true}.

In this case, it can be seen that a Boolean query Q is de�ned by a sentence φ if and only if
CQ =Mod(φ). In the following we o�en do not distinguish between a Boolean query Q and
the associated class of structures CQ ; that is, we will o�en identify a Boolean query with the
associated class of structures.

Using the language of queries, we can now formally de�ne relations between logics, indicat-

ing their relative expressive power over �nite structures. We say that a logic L1 is (at least) as

expressive as a logic L2, and write L2 ≦ L1, if every query de�nable in L2 is also de�nable in
L1. We write L1 ≡ L2 if L1 ≦ L2 and L2 ≦ L1. Finally, we write L2 ≨ L1 if L2 ≦ L1 and there is a
query de�nable in L1 which is not de�nable in L2.

2.2.5 Interpretations and logical reductions

We frequently consider ways of de�ning one structure within another in a logic L. Recall

that an equivalence relation ∼ is a congruence for some n-ary relation R if for all n-tuples x⃗
and y⃗: ⋀i xi ∼ yi → (Rx⃗ ↔ Ry⃗).

De�nition 2.3 (Interpretations). Consider two signatures σ and τ and a logic L. An m-ary
L-interpretation of τ in σ is a sequence of formulae of L in vocabulary σ consisting of:

• a formula δ(x⃗);
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• a formula ε(x⃗ , y⃗);

• for each relation symbol R ∈ τ of arity k, a formula φR(x⃗1, . . . , x⃗k); and

• for each constant symbol c ∈ τ, a formula γc(x⃗),

where each x⃗, y⃗ or x⃗i is anm-tuple of free variables. We callm thewidth of the interpretation.
We say that an interpretation Θ associates a τ-structure B to a σ-structure A if there is a
surjective map h from the m-tuples {a⃗ ∈ U(A)k ∣ A ⊧ δ[a⃗]} to B such that:

• h(a⃗1) = h(a⃗2) if, and only if, A ⊧ ε[a⃗1, a⃗2];

• RB(h(a⃗1), . . . , h(a⃗k)) if, and only if, A ⊧ φR[a⃗1, . . . , a⃗k];

• h(a⃗) = cB if, and only if, A ⊧ γc[a⃗].

Note that an interpretation Θ associates a τ-structure withA only if ε de�nes an equivalence
relation onU(A)m that is a congruence with respect to the relations de�ned by the formulae
φR and γc . In such cases, however, B is uniquely de�ned up to isomorphism and we write
Θ(A) ∶= B. ∎

Herea�er we are only interested in interpretations that associate a τ-structure to every A.
We say that B is L-de�nable overA if there is an L-interpretation (which does not depend on
either A or B) that associates B with A.

We can now de�ne logical reductions from one class of structures to another.

De�nition 2.4 (Logical reductions). Let C be a class of σ-structures and D a class of τ-
structures closed under isomorphisms. An L-interpretation Θ of τ in σ is said to be an L-
reduction from C to D if for every σ-structure A it holds that A ∈ C if and only if Θ(A) ∈ D.
∎

In the following, we will focus mostly on �rst-order reductions. In particular, most of the
logics we consider in this thesis are closed under �rst-order reductions, in the following

sense.

De�nition 2.5 (Closure under �rst-order reductions). Let L be a logic. We say that L is closed
under �rst-order reductions if and only if the set of Boolean queries de�nable in L is closed
under �rst-order reductions; that is, if C is a Boolean query de�nable in L[σ] and Θ a �rst-
order interpretation of τ in σ , then the Boolean query {Θ(A) ∣ A ∈ C} is de�nable in L[τ].
∎

2.2.6 Types and equivalences

Let L be a logic and A a τ-structure. �e L[τ]-type of a tuple a⃗ = (a1, . . . , ak) of elements of
A is the class of all L-formulae in k free variables that are satis�ed by a⃗ in A:

tp(L;A, a⃗) ∶= {φ(x⃗) ∈ L[τ] ∣ A ⊧ φ[a⃗]},

where x⃗ is a k-tuple of variables. We o�en use Greek symbols α, β, γ, . . . to denote types.
We write Tp(L; τ, k) for the class of all L[τ]-types in k free variables over �nite τ-structures,
that is
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Tp(L; τ, k) ∶= {tp(L;A, a⃗) ∣ (A, a⃗) ∈ �n[τ; k]}.

Let (A, a⃗), (B, b⃗) ∈ �n[τ; k], k ≥ 1. We say (A, a⃗) and (B, b⃗) are L-equivalent, and write
(A, a⃗) ≡L (B, b⃗), if tp(L;B, a⃗) = tp(L;B, b⃗). In other words, (A, a⃗) and (B, b⃗) are L-
equivalent if a⃗ and b⃗ satisfy exactly the same L-formulae overA andB respectively. Similarly,
we write A ≡L B if A and B satisfy exactly all the same L-sentences.

If α ∈ Tp(L; τ, k) and a⃗ is a k-tuple of elements from a τ-structure A, then we say that a⃗
realises α inA if tp(L;A, a⃗) = α. �e atomic type of a⃗ overA, atp(A, a⃗), is the type tp(L;A, a⃗)
when L is taken to be the quanti�er-free fragment of �rst-order logic.

2.2.7 Lindström quanti�ers and extensions

Generalised quanti�ers in the sense of Lindström [54] have been studied as a way to increase

the expressiveness of a logic by a prescribed query. Let σ = (R1, . . . , Rl) be a vocabulary
where each relation Ri has arity ni . Consider a class K of σ-structures that is closed under
isomorphism; that is, for σ-structures A and B, if A ∈ K and A ≅ B, then B ∈ K. With K
we associate a Lindström quanti�er QK whose type is the tuple (n1, . . . , nl). �e arity of the
quanti�er QK is the value of max{n1, . . . , nl}. For a logic L, de�ne the extension L(QK) by
closing the set of formulae of L by introducing the following formula-formation rule:

if φ1, . . . , φl are formulae of L(QK), x⃗1, . . . , x⃗l tuples of variables where x⃗i has
length ni , then the expression QK x⃗1 . . . x⃗l (φ1, . . . , φl) is a formula of L(QK)
with all occurrences of x⃗i in φi bound.

�e semantics of the Lindström quanti�er QK is de�ned such that

A ⊧ QK x⃗1 . . . x⃗l (φ1, . . . , φl) if and only if (U(A);φ1(x⃗1)A, . . . , φl(x⃗l)A) ∈ K,

where (U(A);φ1(x⃗1)A, . . . , φl(x⃗l)A) is interpreted as a σ-structure.

Example 2.6. �e existential quanti�er ∃ can be seen as the Lindström quanti�er associ-
ated with the class of structures K over a signature with one unary relation symbol R, given
byK ∶= {(A, RA) ∣ RA ⊆ A and RA ≠ ∅}. ∎

Similarlywe can consider the extension of a logic L by a collectionQ of Lindströmquanti�ers.
�e logic L(Q) is de�ned by adding a rule for constructing formulae with the quanti�er Q,
for each Q ∈ Q, to the list of formula-formation rules for L. �e semantics is de�ned by
considering the semantics for each quanti�er Q ∈ Q, as above.
O�en we consider families of quanti�ers generated under some uniformity condition.

Here we focus on the following notion of uniformity, due to Dawar [15]. Let K be a class
of structures over vocabulary σ = (R1, . . . , Rl). For each k ∈ N, let σk be the vocabulary
(Rk,1, . . . , Rk,l) where the arity of Rk,i is k ⋅ ni . Let Kk be the class of σk-structures de�ned
by

Kk ∶= {(A, S1, . . . , Sl) ∣ (Ak
, S1, . . . , Sl) ∈ K},

where (Ak ; S1, . . . , Sl) is seen as a σ-structure with universe Ak . IfQk is the Lindström quan-
ti�er associated with Kk then we say that the sequence {Qk ∣ k ∈ N} is uniformly generated
by K.



2.3. Logics with inductive de�nitions 12

De�nition 2.7 (Uniform sequences of quanti�ers). A countable collection Q of Lindström
quanti�ers is a uniform sequence if there is a class of structures K such that Q is uniformly
generated byK. ∎

2.3 Logics with inductive de�nitions

We review some common extensions of �rst-order logic with operators for formalising in-

ductive de�nitions. For amore detailed description of any of these logics, see e.g. Ebbinghaus

and Flum [23] or Libkin [52].

2.3.1 In�ationary �xed-point logic

Let φ(R, x⃗) be a formula in the vocabulary τ, where R is a k-ary relation variable and x⃗ is a
k-tuple of variables. Over a pair (A, α), where A is a �nite τ-structure and α an assignment
in A, the formula φ(R, x⃗) de�nes an operator

F(A,α)
φ ∶ ℘(U(A)k) → ℘(U(A)k)

which maps a relation S ⊆ U(A)k interpreting the relation variable R to the relation

F(A,α)
φ (S) ∶= {a⃗ ∈ U(A)k ∣ A ⊧ φ[α S

R
a⃗
x⃗ ]} ⊆ U(A)k .

�is allows us to de�ne an increasing sequence of relations on A:

X0 ∶= ∅,
X i+1 ∶= X i ∪ F(A,α)

φ (X i)

�e in�ationary �xed point of F(A,α)
φ , written ifp(F(A,α)

φ ), is the limit of this sequence. It can
be seen that if ∥A∥ = n then this limit will be reached a�er at most nk stages.

�e terms and formulae of in�ationary �xed-point logic (IFP) in vocabulary τ are de�ned
inductively by extending the rules of �rst-order logic with the following rule.

Let φ(R, x⃗) be a formula, where R is k-ary and x⃗ is a k-tuple of variables. If t⃗ is
a k-tuple of terms then

[ifpR,x⃗φ](t⃗)

is a formula, with free( [ifpR,x⃗φ](t⃗) ) ∶= (free(φ) ∖ (x⃗ ∪ R)) ∪ free(t⃗).

�e semantics of IFP in vocabulary τ is de�ned inductively for all pairs (A, α), where A is
a �nite τ-structure and α an assignment in A, by extending the semantics rules for FO with
the following rule for the ifp-operator:

A ⊧IFP ([ifpR,x⃗φ](t⃗))[α] i� α(t⃗) ∈ ifp(F(A,α)
φ ).
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2.3.2 Transitive closure logics

Let φ(x⃗ , y⃗) be a formula in vocabulary τ, where x⃗ and y⃗ are k-tuples of variables. Given a
pair (A, α), where A is a �nite τ-structure and α an assignment in A, write G⃗(A,α)

φ,x⃗ , y⃗ to denote

the graph on vertex set U(A)k with the set of edges

{(a⃗, b⃗) ∣ A ⊧ φ[α a⃗
x⃗
b⃗
y⃗ ]} ⊆ U(A)k ×U(A)k .

Similarly, writeG(A,α)
φ,x⃗ , y⃗ and G̃

(A,α)
φ,x⃗ , y⃗ to denote the symmetric closure and the deterministic part

of G⃗(A,α)
φ,x⃗ , y⃗ , respectively. To be precise, G̃

(A,α)
φ,x⃗ , y⃗ is the graph obtained from G⃗(A,α)

φ,x⃗ , y⃗ by retaining

only those edges (u, v) where u has out-degree one.

�e terms and formulae of transitive closure logic (FO+TC) in vocabulary τ are de�ned in-
ductively by extending the rules of �rst-order logic with the following rule.

Let φ(x⃗ , y⃗) be a formula, where x⃗ and y⃗ are k-tuples of variables. If t⃗ and s⃗ are
k-tuples of terms then

[tcx⃗ , y⃗φ](t⃗, s⃗)

is a formula, with free([tcx⃗ , y⃗φ](t⃗, s⃗)) ∶= (free(φ)∖(x⃗ ∪ y⃗))∪ free(t⃗)∪ free(s⃗).

�e semantics of FO+TC in vocabulary τ is de�ned inductively for all pairs (A, α), where
A is a �nite τ-structure and α an assignment in A, by extending the semantics rules for FO
with the following rule for the tc-operator:

A ⊧FO+TC ([tcx⃗ , y⃗φ](t⃗, s⃗))[α] i� (α(t⃗), α(s⃗)) is in the transitive closure of G⃗(A,α)
φ,x⃗ , y⃗ .

Similarly, we de�ne symmetric transitive closure logic (FO+STC) and deterministic transitive
closure logic (FO+DTC) in exactly the same way as FO+TC above, except that instead of
formulae involving the tc-operator, we have formulaewith operators stc anddtc, respectively.
�e semantics of these operators is de�ned like the semantics of the tc-operator, except now
we consider reachability in the undirected graphG(A,α)

φ,x⃗ , y⃗ for the stc-operator and reachability

in the deterministic graph G̃(A,α)
φ,x⃗ , y⃗ for the dtc-operator.

2.4 Many-sorted logics and structures

We occasionally consider structures with a number of distinct domains (called sorts) and
strongly typed logics to match, in which the variables range over di�erent domains. Gen-

erally, we try to avoid the notational overhead caused by the presence of sorts as much as

possible, and only mention the typing of variables when it is not obvious from the context.

2.4.1 Many-sorted structures

An m-sorted vocabulary is a vocabulary τ = (R1, . . . , Rk , c1, . . . , cl) where every relation or
constant symbol X ∈ τ has an associated type, denoted by type(X). �at is, if R ∈ τ is a
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relation symbol of arity n, then type(R) ∈ [m]n, and if c ∈ τ is a constant symbol then
type(c) ∈ [m]. An m-sorted structure

A = ((S1, . . . , Sm), RA
1 , . . . , RA

k , c
A
1 , . . . , cAl )

consists of m non-empty sets S1, . . . , Sm, together with

• relations RA ⊆ St1 ×⋅ ⋅ ⋅×Stn for each relation symbol R of arity n and type (t1, . . . , tn) ∈
[m]n; and

• constants cA ∈ St for each constant symbol c of type t ∈ [m].

We write U(A) ∶= ⋃m
i=1 Si for the domain of A. When m = 1 then we simply write A =

(U(A), RA
1 , . . . , RA

k , c
A
1 , . . . , cAl ) instead ofA = ((U(A)), RA

1 , . . . , RA
k , c

A
1 , . . . , cAl ), to be con-

sistent with our notation from before.

2.4.2 Many-sorted logics

Let L be a logic. We can extend L to a many-sorted logic as follows. �e m-sorted logic Lm
is L together with a function type that associates every �rst-order variable x with an integer
type(x) ∈ [m] and associates every second-order variable X of arity nwith a tuple type(X) ∈
[m]n. �e semantics of Lm, de�ned overm-sorted structures, are just like the semantics of L,
except that any assignment α over anm-sorted structureAwith sorts S1, . . . , Sm must satisfy

type(x) = t⇔ α(x) ∈ St ,

for every �rst-order variable x and

type(X) = (t1, . . . , tn) ⇔ α(X) ⊆ St1 × . . . ,×Stn ,

for every second-order variable X of arity n.

2.5 Logics with counting

In this section we de�ne extensions of �rst-order and �xed-point logic with operators for

expressing the cardinality of de�nable relations. In our de�nition of these counting logics, we
follow the convention of Grohe [31]. �at is, both counting logics have variables that range

over the non-negative integers, as well as variables ranging over the elements of a structure,

and terms and formulae are interpreted over countable-in�nite structures that are obtained

by extending a �nite structure with a copy of the integers. To ensure that these logics de�ne

only decidable queries, all variables ranging over integersmust be bound by terms when they

are introduced. Other authors [23, 52] consider counting logics that have number variables

which only range over a �nite subset of the integers. By bounding quanti�cation over the

integers as described above, it can be seen that two formalisms are in fact equivalent over

�nite structures (see e.g. [31] for further details).

Because both counting logics and other ‘numerical logics’ of similar kind will play a

prominent role in this thesis, the de�nitions that follow are provided in full detail.
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2.5.1 First-order logic with counting

First-order logic with counting (FOC) has two kinds of variables: element variables, that
range over the domain elements of a structure, andnumber variables, that range over the non-
negative integers. We commonly use lower-case Latin symbols x , y, z, . . . to denote element
variables and lower-case Greek symbols η, γ, υ, . . . to denote number variables. Generally,
we allow for many-sorted variants of FOC. For instance, in (m + 1)-sorted FOC we have
m + 1 variable types, with number variables assigned type (m + 1) and variables of all other
types collectively referred to as element variables (when m > 1 the actual typing of element
variables will usually be clear from the context). In addition, we have second-order variables

X ,Y , Z , . . . , where the type of a second-order variable X is de�ned as usual.
Let τ be a vocabulary which does not contain any of the symbols in {≤,+, ⋅, 0N , 1N} (oth-

erwise, simply rename the con�icting symbols in τ). Terms of FOC of vocabulary τ are of
two kinds: an element term is an element variable or a constant in τ, and a number term is
a number variable, one of the constant symbols in {0N , 1N}, an application of the functions
+ or ⋅ or a counting term, expressing the cardinality of a de�nable relation. �e terms and
formulae of FOC of vocabulary τ are de�ned inductively by the following rules.

E.1 All element variables x are element terms, where we let free(x) ∶= {x}.

E.2 All constants c ∈ τ are element terms, where we let free(c) ∶= ∅.

N.1 All number variables υ are number terms, where we let free(υ) ∶= {υ}.

N.2 �e constants 0N and 1N are number terms, where we let free(0N) ∶= free(1N) = ∅.

N.3 If s, t are number terms, then the expressions (s + t) and (s ⋅ t) are number terms,
where we let free(s ∗ t) ∶= free(s) ∪ free(t) for ∗ ∈ {+, ⋅}.

F.1 If s, t are number terms, then the expressions s = t and s ≤ t are formulae, where we
let free(s ∗ t) ∶= free(s) ∪ free(t) for ∗ ∈ {=, ≤}.

F.2 If s, t are element terms, then the expression s = t is a formula, where free(s = t) ∶=
free(s) ∪ free(t).

F.3 If R ∈ τ is a k-ary relation symbol and t⃗ = (t1, . . . , tk) is a tuple of element terms, then
Rt⃗ is a formula, where we let free(Rt⃗) ∶= free(t⃗).

F.4 If X is a k-ary relation variable and t⃗ = (t1, . . . , tk) are terms whose type matches that
of X, then Xt⃗ is a formula, where we let free(Xt⃗) ∶= {X} ∪ free(t⃗).

F.5 If φ is a formula and x an element variable, then ∃x .φ and ∀x .φ are formulae, where
we let free(∃x .φ) ∶= free(∀x .φ) = free(φ) ∖ {x}.

F.5 If φ is a formula, υ is a number variable and t is a number term, then ∃υ ≤ t.φ and
∀υ ≤ t.φ are formulae, where we let free(∃υ ≤ t.φ) ∶= free(∀υ ≤ t.φ) = (free(φ) ∖
{υ}) ∪ free(t).

F.6 If φ and ψ are formulae then the expressions ¬φ, φ∧ψ, and φ∨ψ are formulae, where
we let free(¬φ) ∶= free(φ) and free(φ ∗ ψ) ∶= free(φ) ∪ free(ψ) for ∗ ∈ {∧,∨}.
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C If φ is a formula and x is an element variable then #xφ is a number term, where we let
free(#xφ) ∶= free(φ) ∖ {x}.

�e semantics of FOC of vocabulary τ is de�ned over numerical structures of vocabulary τ,
which are τ-structures expanded with a copy of the non-negative integers.

De�nition 2.8 (Numerical structures). Let τ = (R1, . . . , Rk , c1, . . . cl) be a vocabulary which
does not contain any of the symbols in {≤,+, ⋅, 0N , 1N}. Write τ⋆ ∶= τ ∪ {≤,+, ⋅, 0N , 1N},
where ≤ is a binary relation, + and ⋅ are binary functions and 0N and 1N are constants. For
any m-sorted τ-structure A, with sorts S1, . . . , Sm, we write A⋆ to denote the (m + 1)-sorted
τ⋆-structure

((S1, . . . , Sm ,N0), RA
1 , . . . , RA

k , c
A
1 , . . . , cAl , ≤N0 ,+N0 , ⋅N0 , 1

N0
N , 0

N0
N ),

where we viewN0 as the set of non-negative integers, disjoint fromU(A). Here +N0 and ×N0
denote addition and multiplication over N0, ≤N0 is the standard ordering of the integers N0,
and the constants 0

N0
N and 1

N0
N denote the �rst and second elements of N0, respectively. We

refer to the domainU(A) as the element sort ofA⋆ and the last sortN0 as the number sort of
A⋆. ∎

Remark. To keep our vocabulary purely relational, we could instead de�ne addition and
multiplication over the number sort as ternary relations R+ and R⋅, respectively, instead of
functions + and ⋅. �us, we could write R+(x , y, z) instead of x + y = z for all numeric terms
x, y and z, and similarly for R⋅. However, the use of functions does simplify some of our
exposition later and, apart from minor changes to the rules for bounded quanti�cation, it

can be seen the di�erence between the two representations is purely notational and has no

bearing on the expressive power of our logics.

Formally, the semantics of FOC[τ] is de�ned over pairs (A⋆, α), where α is a variable as-
signment in A⋆. We write ⊧numFOC for the satisfaction relation between numerical structures
on the one hand and on the other hand FOC formulae and assignments. If t is a term, then
we write α(t) to denote the value that is assigned to t over A⋆2. Number terms are assigned
values in N0 and element terms are assigned values in U(A). �e constants 0N and 1N are
interpreted as the integers zero and one, respectively. For number terms s and t, we de�ne
α(s+ t) ∶= α(s)+α(t) and α(s ⋅ t) ∶= α(s) ⋅α(t), where the right-hand side of each equation
denotes an arithmetic expression over the integers. We extend the de�nition of type from

variables to terms, and de�ne the type of a term t to be k if t takes values in the k-th sort of
A⋆. For a formula φ, the satisfaction relation A⋆ ⊧numFOC φ[α] is de�ned in the obvious way,
with comparison of number terms interpreted by comparing the respective integer assign-

ments over N0. In particular, when φ is of the form ∃υ ≤ t.ψ(υ), for some formula ψ and
number term t, then we de�ne A⋆ ⊧numFOC (∃υ ≤ t.ψ(υ))[α] if and only if there is an integer
m ∈ [0, α(t)] such that

A⋆ ⊧numFOC ψ(υ)[α m
υ ].

We also commonlywrite∃υ < t.φ(υ) and∀υ < t.φ(υ) as shorthand for∃υ ≤ t.(υ ≠ t)∧φ(υ)
and ∀υ ≤ t.(υ ≠ t) → φ(υ), respectively.
Finally, consider a counting term of the form #xφ, where φ is a formula and x an element

variable. Here the intended semantics is that #xφ denotes the number (i.e. the member of
2
Occasionally, when t has no free variables, we write tA

⋆

to denote α(t) where α is any assignment in A⋆
.
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the number sort) of elements that satisfy the formula φ. More formally, the semantics of
counting terms of FOC over vocabulary τ is de�ned as follows:

α(#xφ) ∶= ∥{a ∈ U(A) ∣ A ⊧numFOC φ[α a
x ]}∥.

While we interpret terms and formulae of FOC over countable-in�nite τ⋆-structures, we are
ultimately interested in queries de�ned over �nite τ-structures. For that purpose, we de�ne
the satisfaction relation ⊧FOC between formulae of FOC[τ] and structure-assignment pairs
over vocabulary τ as follows.

De�nition 2.9. Let τ be a vocabulary and let φ be a formula of FOC[τ]. Suppose the free
variables of φ contain no number variables and no second-order variables with a component
of number type. �en for any τ-structure A and any assignment α over A, we de�ne

A ⊧FOC φ[α] ∶⇔ A⋆ ⊧numFOC φ[α].

�at is, φ is satis�ed in A with assignment α if and only if φ is satis�ed in the number ex-
pansion A⋆ with assignment α. ∎

Example 2.10. Over any �nite structure, the number term tcard ≡ #x(x = x) denotes the
cardinality of the domain of the structure. �e following sentence in the language of graphs

now states that all vertices have an even degree:

φ ≡ ∀x ∃µ ≤ tcard (#y(E(x , y)) = µ + µ).

It follows that on the class of all �nite graphs, φ de�nes exactly the class of Eulerian graphs. ∎

Later we will make use of the following basic lemma, whose proof is trivial.

Lemma 2.11. �ere is a formula prime(υ) of FOC, where υ is a number variable, such that for
all structures A and all assignments α over A⋆,

A⋆ ⊧numFOC prime(υ)[α] ⇔ α(υ) is a prime number.

Proof. �e formula

comp(υ) ≡ ∃µ1 < υ ∃µ1 < υ.((1 < µ1) ∧ (µ1 ⋅ µ2 = υ))

says that υ has a proper factor. Hence, prime(υ) ≡ ¬comp(υ).

Finally, we note that the reason why primality can be expressed quite easily in FOC has more

to dowith the fact that integers described by number terms are tiny (i.e. represented in unary)
than it has to do with the actual expressive power of the logic.

2.5.2 Fixed-point logic with counting

We also consider the logic obtained by extending FOC with in�ationary �xed-point opera-

tors over numerical structures.
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De�nition 2.12 (Fixed points in numerical structures). Let φ(R, x⃗) be a formula in vocabu-
lary τ, where R is a k-ary relation variable of type (h1, . . . , hk) and x⃗ is a k-tuple of variables
of types h1, . . . , hk , respectively. Let t⃗ be an l-tuple of number terms, where l is the num-
ber of distinct number variables in x⃗. Let f ∶ {x1, . . . , xk} ⇀ [l] be the partial function
which maps each number variable in x⃗ to its index amongst the number variables in x⃗; that
is f (xi) = j if xi is a number variable that occurs as the j-th number variable in x⃗. Given a
�nite τ-structure A and an assignment α in A⋆, write mi = α(ti) for i ∈ [l]. Over (A⋆, α),
the pair (φ(R, x⃗), t⃗) de�nes an operator

F(A,α)
φ, t⃗ ∶ ℘(U(A⋆)k) → ℘(U(A⋆)k)

which maps a relation S ⊂ U(A⋆)k interpreting the relation variable R to the relation

F(A,α)
φ, t⃗ (S) ∶= {a⃗ ∈ B1 ×⋯ × Bk ∣ A⋆ ⊧ φ[α S

R
a⃗
x⃗ ]},

where

Bi =
⎧⎪⎪⎨⎪⎪⎩

[0,m f (x i)] ⊂ N0 if xi is a number variable,
U(A) otherwise.

Here the number terms t⃗ ensure that F(A,α)
φ, t⃗ (S) is a �nite set. �is now allows us to de�ne

an increasing sequence of relations on A⋆:

X0 ∶= ∅,
X i+1 ∶= X i ∪ F(A,α)

φ, t⃗ (X i)

�e in�ationary �xed point of F(A,α)
φ, t⃗ , written ifp(F(A,α)

φ, t⃗ ), is the limit of this sequence. It can
be seen that if ∥A∥ = n and m = max{m1, . . . ,ml} then this limit will be reached a�er at
most (n +m)k stages. ∎

We can now de�ne the logic IFPC, the extension of FOC with operators for de�ning in�a-

tionary �xed points. �e terms and formulae of IFPC of vocabulary τ are de�ned inductively
by extending the rules of FOC with the following rule.

Let φ(R, x⃗) be a formula, where R is k-ary of type (h1, . . . , hk) and x⃗ is a k-tuple
of variables of types h1, . . . , hk , respectively. Let t⃗ be an l-tuple of number terms,
where l is the number of distinct number variables in x⃗. If s⃗ is a k-tuple of terms
of types h1, . . . , hk , respectively, then

[ifpR,x⃗≤t⃗φ](s⃗)

is a formula. We let

free( [ifpR,x⃗≤t⃗φ](s⃗) ) ∶= ((free(φ) ∪ free(t⃗)) ∖ (x⃗ ∪ R)) ∪ free(s⃗).

Terms and formulae of IFPC are interpreted over pairs (A⋆, α), just as with FOC before. We
write ⊧numIFPC for the satisfaction relation between numerical structures on the one hand and
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on the other hand IFPC formulae and assignments. �e relation ⊧numIFPC extends ⊧numFOC, with
the semantics of the ifp-operator de�ned as follows:

A⋆ ⊧numIFPC ([ifpR,x⃗≤t⃗φ](s⃗))[α] i� α(s⃗) ∈ ifp(F(A,α)
φ, t⃗ ).

As with FOC before, we de�ne a satisfaction relation ⊧IFPC between non-numerical struc-
tures A and IFPC formulae with no free number variables by

A ⊧IFPC φ[α] ∶⇔ A⋆ ⊧numIFPC φ[α]

for an assignment α inA. Herea�er, we usually omit the subscripts from ⊧FOC and ⊧IFPC and
simply write ⊧ where it will be clear from the context which logic we are considering.

2.6 In�nitary logics

We write FOk to denote the fragment of �rst-order logic in which the only variables allowed
are x1, . . . , xk . �e in�nitary logic Lk is obtained by closing FOk under conjunction and
disjunction of arbitrary (possibly in�nite) sets of formulae. �at is, if Φ is any set of Lk-
formulae, then⋀Φ and⋁Φ are formulae ofLk that denote the conjunction and disjunction
of the formulae in Φ, respectively. �e intended semantics is that ⋀Φ is satis�ed when all
the formulae in Φ are satis�ed and ⋁Φ is satis�ed when at least one of the formulae in
Φ is satis�ed. We write Lω ∶= ⋃k<ω Lk for the in�nitary logic in which each formula has
only �nitely many variables, taken from the collection {xi ∣ i ∈ N}. We o�en use variables
x , y, z, . . . instead of x1, x2, x3, . . . to make formulae more readable. For an excellent refer-
ence on �nite-variable in�nitary logics, see Otto’s monograph [58].

It is noted by Otto [58] that the logic Lω can de�ne arbitrarily complex queries. In fact,
he shows that with only two variables, there are non-recursive queries on the class of linearly

ordered structures that can be de�ned in L2. On the other hand, it can also be shown that
there are queries of very low complexity which are not de�nable in Lω. Such queries o�en
involve counting in one form or another. For instance, it can be proved using a simple game

argument that over the empty vocabulary, Lk−1 cannot de�ne the class of structures having
at least k distinct elements.
Due to these limitations of Lω, it is natural to consider the extension of in�nitary logic

with a collection of counting quanti�ers, which are de�ned as follows. For each natural num-
ber i, we have a quanti�er∃≥i which binds a single formula. A logic L extendedwith counting
quanti�ers has the following formula-formation rule, in addition to its usual rules: if φ is a
formula and i a positive integer, then ∃≥ix φ is a formula. �e semantics of a counting quan-
ti�er is de�ned as follows:

A ⊧ ∃≥ix φ if and only if there are at least i distinct elements a ∈ U(A) such that
(A, a) ⊧ φ(x).

We also write ∃=ix φ to denote the formula ∃≥ix φ ∧ ¬∃≥i+1x φ. Similarly, we can de�ne
counting quanti�ers ∃≤i , ∃<i and ∃>i . We write FOCk to denote the k-variable fragment of
�rst-order logic extendedwith counting quanti�ers andwriteCk to denote the corresponding
in�nitary logic. For each k, it can be shown that FOCk is more expressive than FOk (the k-
variable fragment of �rst-order logic) and Ck is more expressive than Lk , and indeed Cω ∶=
⋃k<ω Ck contains formulae that are not equivalent to any formula of Lω.
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In each of the above cases, the proofs that certain properties are not expressible in the

given logic are most clearly formulated in terms of games. �us, we can show that there are

properties not de�nable inLω bymeans of a variant of the classic Ehrenfeucht-Fraïssé game,
which allows for in�nitely long plays but with a �xed number of tokens. We discuss game

methods further in Chapter 6. Similarly, there is a game that gives us a method to prove that

there are properties not de�nable in Cω.

�e interest in studying these in�nitary logics, from the point of view of �nite model theory,

comes from the fact that they have proved useful in analysing the expressive power of �xed-

point logics. �is was illustrated by Kolaitis and Vardi [49], who observed that any sentence

of IFP is equivalent to one of Lω. Similarly, it can be shown that any sentence of IFPC is
equivalent to one of Cω over �nite structures (see e.g. [58] for details). Since queries de�nable
in IFP and IFPC are in PTIME, whileLω and Cω can express queries of arbitrary complexity,
it follows that both the inclusions are proper, as stated by the following theorem.

�eorem 2.13. IFP ≨ Lω and IFPC ≨ Cω.

2.7 Algebra

We recall some basic de�nitions from abstract algebra, linear algebra and graph theory.

2.7.1 Common algebraic structures

For reference, we give the de�nition of some of the basic algebraic structures we will consider

in this dissertation. For further details on any of these topics, see e.g. Lang’s textbook [51].

Groups. A group is a non-empty set G with one binary operation ○ that satis�es the fol-
lowing axioms:

• Closure. If a and b are two elements in G, then a ○ b is also in G;

• Associativity. �e operation ○ is associative, i.e. (a ○ b) ○ c = a ○ (b ○ c) for any a, b
and c in G;

• Identity. �ere is an element e in G, known as the identity element, such that a ○ e =
e ○ a = a for any a in G;

• Inverse.�e operation ○ admits inverse elements; that is for any a in G there exists an
element a−1 in G, said to be inverse to a, such that a ○ a−1 = a−1 ○ a = e.

O�enwe use the standard symbols for addition (+) andmultiplication (⋅) to denote the group
operation. In the former case we say that the group is written additively and we write 0 or
0G for the identity element and −a for the inverse to an element a in G. In the latter case we
say that the group is writtenmultiplicatively and we write 1 or 1G for the identity element. A
group G is said to be Abelian if its operation ○ is commutative; that is, if a ○ b = b ○ a for all
a and b in G.
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Rings. A ring is a set R with two binary operations, called addition (+) and multiplication
(⋅), for which it holds that (a) the set (R,+) is an Abelian group with respect to addition (the
additive group of the ring); (b) R is closed under multiplication, multiplication is associative
and there exists an element 1R in R such that a ⋅ 1R = 1R ⋅ a = a for all a ∈ R; and (c)
multiplication is related to addition by the distributive laws:

a ⋅ (b + c) = a ⋅ b + a ⋅ c,
(a + b) ⋅ c = a ⋅ c + b ⋅ c.

As with standard addition and multiplication of numbers, we o�en omit the multiplication

symbol and write ab to denote a ⋅ b, when it is clear from the context. We write −a for the
additive inverse to an element a in R and write a − b as a shorthand for a + (−b), for a
and b in R. Also, we usually write 0R for the additive identity element of R. Note that our
de�nition of a ring is strictly a “ring with multiplicative identity” but the distinction will

not be necessary in the following. A ring R is said to be commutative if its multiplication
is commutative. For m ∈ N, we write Zm for the �nite ring consisting of the m integers
{0, . . . ,m − 1} where addition and multiplication is de�ned as the corresponding operation
over the integers modulo m.
An ideal of a ring R is a subset I ⊆ R that is an additive subgroup of R and is closed

under multiplication by elements from R; that is, whenever a belongs to R and b belongs to
I, then ab and ba belong to I. For example, in the ring of integers Z, the set of even numbers
2Z ∶= {2n ∣ n ∈ Z} is an ideal: it forms a group under integer addition and the product of an
arbitrary integer and an even number is always even.

Let I be an ideal of a ring R. De�ne an equivalence relation ≃I on R by a ≃I b if and only
if a− b ∈ I. If a is an element of R then we write [[a]]I for the equivalence class of a in R/ ≃I .
�e quotient ring of R modulo I is the set R/I ∶= {[[a]]I ∣ a ∈ R}, with ring structure de�ned
for all a and b in R by

[[a]]I + [[b]]I ∶= [[a + b]]I and [[a]]I ⋅ [[b]]I ∶= [[a ⋅ b]]I .

It can be easily veri�ed that this is a well-de�ned ring, with multiplicative identity [[1R]]I .
In particular, it can be seen that R/I is commutative if R is commutative. As an example,
consider the ring Z and the ideal 2Z of even numbers, as above. �en Z/(2Z) is a ring
that contains two elements (equivalence classes): one for the even numbers and one for the

odd numbers. More generally, for m ∈ N, the quotient ring Z/(mZ) contains exactly m
elements. It can be seen that for each m ∈ N, Z/(mZ) ≅ Zm under the isomorphism that
maps the equivalence class of k ∈ Z to the integer k mod m.

Fields. A �eld is a commutative ring F that contains at least two elements and for which
every non-zero element has a multiplicative inverse. In other words, a ring F is a �eld if the
set F× ∶= F ∖ {0F} of non-zero elements of F is a group with respect to multiplication. It
can be seen that the ring of integers Z is not a �eld (there is no integer x such that 2x = 1)
whereas the set of rational numbersQ is a �eld, where each non-zero rational number a has
multiplicative inverse 1a .
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Let F be a �eld. If there is a natural number n such that for any a in F, the element

n × a ∶= a + a + . . . a + a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

,

obtained by adding a to itself n times, is 0F then the characteristic of F is the least such n;
otherwise, if there is no such n then F is said to have characteristic zero. It is not hard to
show that the characteristic of any �eld is either zero or a prime number.

A sub�eld F of a �eld E is a subset F ⊆ E which itself is a �eld under the operations
of addition and multiplication de�ned in E. A �eld E containing F as a sub�eld is called
an extension of F. A �eld extension E of F can be regarded as a vector space over F in the
obvious way (E is the set of vectors, F the �eld of scalars). �e degree of E over F, written
[E ∶ F], is the dimension of E as an F-vector space. A �eld extension E over F is said to be
�nite if [E ∶ F] is �nite and in�nite otherwise. As an example, the �eld of complex numbers
C is a �eld extension of degree two over the �eld of real numbers R. On the other hand, it
can be seen by a countability argument that R has in�nite degree as an extension of Q: the
set Q is countable and every �nite-dimensional vector space over a countable set must be
countable, which R is of course not.

Polynomials and polynomial rings. Let R be a commutative ring. We write R[X] for the
set of polynomials in indeterminate X with coe�cients from R. It can be seen that R[X]
forms a ring under addition and multiplication of polynomials, called the polynomial ring of
R in indeterminate X. A polynomial f ∈ R[X] is said to be a constant polynomial if there is
an element a ∈ R such that f = a. When F is a �eld, we consider certain minimal elements
of the polynomial ring F[X], de�ned as follows.

De�nition 2.14 (Irreducible polynomial). Let F be a �eld. A polynomial f ∈ F[X] is said
to be irreducible over F if f has positive degree and for any g , h ∈ F[X], f = gh implies that
either g or h is a constant polynomial. ∎

2.7.2 Finite �elds

A �nite �eld is a �eld with �nitely many elements. A �nite �eld F will have pd elements,
where the prime p is the characteristic of F and d is the degree of F over its prime sub�eld.
Moreover, it can be shown that for each prime p and each positive integer d, there exists a
�nite �eld with pd elements which is unique up to isomorphism. For further details, see e.g.
Lidl and Niederreiter [53, Chapter 2.1]. We write GFpd for the �nite �eld with pd elements.
We write F× to denote the multiplicative group of nonzero elements of a �nite �eld F.

�e multiplicative group of a �nite �eld is always cyclic (see e.g. Lang [51, �eorem 5.3]). A

generator of the cyclic group F× is called a primitive element and there are exactly φ(p − 1)
primitive elements in F, where φ is Euler’s totient function (that is, φ(n) is the number of
integers in [n] which are co-prime to n).
Now consider the prime �eld F = GFp, where p is prime. �en F ≅ Z/(pZ) ≅ Zp where

the �eld Zp consists of the integers {0, . . . , p − 1}, with addition and multiplication carried
out modulo p, as discussed before. However, when d > 1 it is not true that GFpd ≅ Z/(pdZ),
the quotient ring of Z by the ideal pdZ. To see this, note that the element p ∈ Z/(pdZ) does
not have a multiplicative inverse in Z/(pdZ). Suppose, towards a contradiction, that q is the



2.7. Algebra 23

inverse of p in Z/(pdZ), i.e. pq ≡ 1 (mod pd). �en

pd−1pq = pd−1(pq) ≡ pd−1(1) ≡ pd−1 ≢ 0 (mod pd),

but at the same time

pd−1pq = (pd−1p)q) = pdq ≡ 0 (mod pd).

Instead, a standard representation of the elements ofGFpd is obtained as follows. LetK = GFp
be the �nite �eld with p elements. �en for every n ≥ 1, there exists a monic irreducible
polynomial of degree n over K. Indeed, the number Np(n) of such polynomials can be
given explicitly by

Np(n) =
1

n∑k∣n
µ(k)pn/k ,

where the Moebius function µ ∶ N0 → N0 is de�ned by

µ(n) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if n = 1,
(−1)r if n is the product of r distinct primes,
0 if n is divisible by a square of a prime.

A rough estimate gives a lower bound of

Np(n) ≥
1

n
(pn − pn − p

p − 1 ) > 0.

For more details, see Lidl and Niederreiter [53, Chapter 2]. Now let f ∈ K[X] be a monic
irreducible polynomial f (X) of degree d over K. �en F ≅ K[X]/( f (X)), the quotient of
the polynomial ring K[X] and the ideal generated by f (X). �at is, we can consider the
elements of F to be polynomials of degree less than d. Addition and multiplication in this
representation is carried out by adding and multiplying together polynomials and reducing

the result modulo f (X). Note that in §4.2.2 we consider an alternative way to represent the
elements of F, as d × d matrices with elements from the prime �eld K.

2.7.3 Graphs

A directed graph is a pair G = (V , E) where V is a �nite set of vertices and the set of edges E
is an irre�exive binary relation on V . An edge (v ,w) ∈ E is considered to be directed from
v to w. In this case, we say that w is a direct successor of v and v is a direct predecessor of
w. We write Nout(v) ∶= {w ∈ V ∣ (v ,w) ∈ E} ⊆ V for the set of direct successors of v and
Nin(v) ∶= {w ∈ V ∣ (w , v) ∈ E} ⊆ V for the set of direct predecessors of v. �e out-degree of
a vertex v, degout(v), is the number ∥Nout(v)∥ of its direct successors and the in-degree of v,
degin(v), is the number ∥Nin(v)∥ of its direct predecessors.
A graph is a pair G = (V , E) where the set of edges E is a collection of two-element

subsets of the vertex set V . �us, a graph can be seen as a directed graph with a symmetric
edge relation. Observe that we consider only simple graphs, that is graphs that are loop-free

and without parallel edges. We o�en write vw instead of {v ,w} to denote an edge between
v and w in a graph G. An edge e ∈ E is said to be incident to v if v is one of the end points of
e, that is if v ∈ e. �e degree of v, deg(v), is the number of edges incident to v. If v ∈ V is a
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vertex of G, then we write N(v) ∶= {w ∈ V ∣ vw ∈ E} ⊆ V for the set of neighbours of v and
E(v) ∶= {vw ∣ w ∈ N(v)} ⊆ E for the set of edges incident to v. If G is a graph (directed or
undirected), then we write V(G) and E(G) for the vertex set and edge set of G, respectively.
An orientation of a graph G = (V , E) is a directed graph G⃗ = (V , E⃗) which is obtained

by orienting the edges of G; that is, for each edge vw ∈ E, exactly one of (v ,w) and (w , v) is
in E⃗ and for every (v ,w) ∈ E⃗, vw is an edge in E.

De�nition 2.15 (Disjoint union of graphs). Let (Gi)i∈I be a family of graphs, indexed by a
non-empty �nite set I. �e disjoint union ⋃̇i∈IGi of the graphs Gi is a graph de�ned by

V( ˙⋃i∈IGi) ∶= {(v , i) ∣ v ∈ V(Gi), i ∈ I} and
E( ˙⋃i∈IGi) ∶= {(v , i)(w , i) ∣ vw ∈ E(Gi), i ∈ I}.

In particular, we write G∪̇H for the disjoint union of a pair of graphs G and H. ∎

2.8 Linear algebra

We review some basic linear algebra and introduce unordered matrices, whose rows and
columns are indexed by arbitrary unordered sets. For more background on matrix theory

and linear algebra see e.g. Horn and Johnson [42] and for further details on the study of

unordered matrices see Blass et al. [9].

2.8.1 Matrices and linear maps

Let R be a commutative ring. An m × n matrix over R is a rectangular array of scalars from
R, consisting of m rows and n columns. We write m × n for the dimension of A. An m × n
matrix is said to be square (of order n) if m = n. We write A = (ai j)1≤i≤m,1≤ j≤n (or A = (ai j)
for short when the dimension of A is clear from the context) to denote the matrix

A =
⎛
⎜
⎝

a11 ⋯ a1n
⋮ ⋱ ⋮

am1 ⋯ amn

⎞
⎟
⎠
.

When R = F is a �eld, a matrix over F can alternatively be seen to represent a linear map
between two �nite-dimensional vector spaces, given a basis for each vector space. To see

this, we �rst recall some basic de�nitions from elementary linear algebra. Let U be an n-
dimensional vector space over a �eld F and let B = {u1, . . . , un} be an ordered basis for U ,
where u1 < u2 < ⋅ ⋅ ⋅ < un. With respect to this basis, we can represent each element x of U
as an n-tuple [x]B ∶= (a1, . . . , an) ∈ Fn, where x = a1u1 +⋯ + anun is the unique expression
of x in terms of the basis elements of B. �e scalars ai are called the coordinates of x with
respect to the basis B and [x]B is the unique B-coordinate representation of x. It is not hard
to see that the map U → Fn, x ↦ [x]B is an isomorphism of vector spaces.
Now consider an n-dimensional vector space U and an m-dimensional vector space V

over the same scalar �eld F. Let BU = {u1, . . . , un} be a basis forU and let BV = {v1, . . . , vm}
be a basis forV . If T ∶ U → V is a linear map then we construct anm×nmatrix A as follows.
For each ui ∈ BU , let [T(ui)]BV = a1iv1 + ⋯ + amivm and let A ∶= (ai j) denote the matrix
obtained by gathering all the coe�cients ai j. We call A thematrix representing T with respect
to bases BU and BV . It can be seen that for any x ∈ U , [T(x)]BV = A([x]BU ). Observe that
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here the ordering of each basis is important. �at is, changing the ordering of a given basis

amounts to permuting the rows and columns of the associated matrix representation.

By this discussion, every linear map can be represented by a matrix, given suitable bases

for both its domain and co-domain. Moreover, every matrix can be seen as a representation

of some linear map. More speci�cally, let A be an m × n matrix over a �eld F. �en A is the
matrix of the linear map T ∶ Fn → Fm, de�ned for all x ∈ Fn by T(x) ∶= Ax, where x is seen
as a column vector of length n over F. �e image of A is the image {Ax ∣ x ∈ Fn} ⊆ Fm of
the associated linear map and the null-space (or kernel) of A is {x ∈ Fn ∣ Ax = 0} ⊆ Fn. �e
rank of the matrix A is the dimension of its image and the nullity of A is the dimension of its
null-space. A fundamental result of elementary linear algebra is the relation

n = dimension of the image of A + dimension of the null-space of A,

o�en referred to as the rank-nullity theorem.

2.8.2 Matrices indexed by unordered sets

Rank and nullity are two examples of matrix properties that are in fact properties of the

underlying linear map that the matrix represents. �e same holds for many common ma-

trix properties that we focus on in linear algebra; for example determinant and singularity.

It follows from the above discussion that such natural matrix properties are invariant under

permutation of the rows and columns of thematrix, since the associated linear map is invari-

ant under a permutation of the chosen vector space bases. With this in mind, it is natural

to consider a more general notion of a matrix, where the rows and columns are indexed by

arbitrary unordered sets.

Let R be a commutative ring and let I, J be �nite, non-empty sets. An I × J matrix A over R
is a function A ∶ I × J → R. Here the rows of A are indexed by I and the columns of A are
indexed by J. We write A = (ai j) to denote that A(i , j) = ai j for all i ∈ I and j ∈ J. If I = J
then A is called a square matrix. We write MI×J(R) for the set of I × J matrices over R, and
letMI(R) ∶= MI×I(R). If A is an I × J matrix then the dimension of A is ∥I∥ × ∥J∥.
By taking I = [m] and J = [n] we recover the more familiar notion of anm × nmatrix A

from above; i.e. a rectangular array of elements consisting of m rows and n columns. Most
natural matrix properties from linear algebra apply directly to matrices indexed by arbitrary

sets as discussed above; in the following we review a few of the relevant ones, where we write

R to denote a commutative ring.

Matrix addition and multiplication. Addition and multiplication of unordered matrices

is de�ned in exactly the same way as for ordered matrices, except that we now have to ensure

that the index sets of the two matrices, and not just their dimension, are matching. �at is,

if A and B are two I × J matrices then their sum A+ B is the I × J matrix de�ned for all i ∈ I
and j ∈ J by (A + B)(i , j) ∶= A(i , j) + B(i , j). Similarly, if A is an I × K matrix and B is a
K × J matrix, where all index sets are �nite and non-empty, then the product of A and B is
the I × J matrix AB de�ned for all i ∈ I and j ∈ J by (AB)(i , j) ∶= ∑k∈K A(i , k)B(k, j).
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Determinant and trace. Let I be a �nite and non-empty set and consider an I × I square
matrix A over R. �e determinant of A, written det(A), is given by

det(A) ∶= ∑
σ∈Sym(I)

sgn(σ)∏
i
aiσ(i),

where the sum is taken over the symmetric group Sym(I) of all permutations of I. Here
sgn(σ) denotes the sign of the permutation σ , de�ned by sgn(σ) ∶= (−1)m where m is the
number of transpositions of pairs of elements that must be composed to build up the per-

mutation σ . Note that the determinant of a matrix over R is an element in R. �is de�nition
agrees with the usual de�nition of the determinant of an n × n matrix. �is is because if we
linearly order the index set I, then we obtain an ∥I∥ × ∥I∥matrix in the usual sense and the
determinant of this matrix is independent of the ordering, since by changing the ordering we

are e�ectively permuting the rows and columns in the same way, which preserves the value

of the determinant3.

�e trace of an I× Imatrix A = (ai j) over a commutative ring R, written tr(A), is de�ned
by tr(A) ∶= ∑i∈I aii . �at is, the trace of A is just the sum of the entries along the main
diagonal.

Rank and singularity over a �eld. Let F be a �eld and consider a �nite set I. We write F I

for the space of all functions g ∶ I → F. �is can be given the structure of a vector space,
where addition of two vectors g and f in F I is the function x ↦ g(x) + f (x) in F I and
multiplication of a vector g ∈ F I by a scalar a ∈ F is the function x ↦ a ⋅ g(x) in F I . When
I is linearly ordered, this de�nition agrees with the standard notion of a Cartesian ∥I∥-space
over F.
Now consider an I × J matrix A over F. �e rank of A, written rank(A), is de�ned as

the dimension of the image {Ax ∣ x ∈ F J} ⊆ F I , as a subspace of F I . It can be seen that the
rank of an unordered matrix in this sense agrees with the usual de�nition of matrix rank,

since the rank of a matrix is invariant under permutation of its rows and columns. When

∥I∥ = ∥J∥ = n, then we say that A is non-singular if rankA = n and singular otherwise. By
elementary linear algebra, it follows that A is non-singular if and only if there is a J× Imatrix
B for which it holds that AB is the I× I identity matrix (equivalently, such that BA is the J × J
identity matrix). Such a matrix is also said to be invertible and we write A−1 to denote its
inverse. For the case when I = J, it can be seen that a square I × I matrix A over F is singular
if and only if det(A) = 0.
Consider again non-empty �nite sets I and J of the same cardinality. Two squarematrices

A ∈ MI(F) and B ∈ MJ(F) are said to be similar if there exists a non-singular I × J matrix S
3
Alternatively, we could have considered a determinant function which applies to arbitrary I × J matrices

where ∥I∥ = ∥J∥ = n (that is, I and J are not necessearily the same set). �is problem was considered brie�y by
Blass, Gurevich and Shelah in [9]. However, it can be seen that when I ≠ J then the determinant of an unordered
I × J matrix only corresponds with the determinant of an ordered n × n matrix up to sign. �is is because if
we linearly order the index sets I and J then the determinant of the corresponding n × n matrix depends on
the chosen orderings since we are e�ectively permuting the rows and columns independently. To see how this
a�ects the sign of the determinant, recall that for any n × n matrix M and n × n permutation matrices P and
Q, det(PMQ) = det(P)det(M)det(Q) = (−1)

i
det(M)(−1)

j
, where i , j ≥ 0 are integers depending on P and

Q, respectively (see e.g. Horn and Johnson [42]). Clearly when Q = P−1 (that is, when we permute the rows
and columns in the same way), then det(PMP−1) = det(M). Otherwise, however, det(PMQ)may di�er in sign

from det(M).
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over F such that
B = S−1AS .

�e transformation A↦ S−1AS is called a similarity transformation by the similarity matrix
S.

De�nition 2.16 (Bijection matrices). Let F be a �eld and let I and J be �nite sets with ∥I∥ =
∥J∥ > 0. For a bijection π ∶ I → J, write Bπ for the I × J bijection matrix over F, de�ned for
all i ∈ I and j ∈ J by

Bπ(i , j) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 if π(i) = j,
0 otherwise.

∎

It can be easily veri�ed that a bijection matrix Bπ is invertible, with its inverse explicitly
given by B−1π = Bπ−1 . Multiplying a J × J matrix A on the le� by an I × J bijection matrix
Bπ results in a relabeling of the rows of A according to π. �at is, BπA is an I × J matrix
given by (BπA)(i , j) = A(π(i), j). Similarly, multiplying A on the right by B−1π results in a
relabeling of the columns of A according to π−1. By simultaneously applying the bijection π
to the rows and columns of A, we obtain the I × I matrix BπAB−1π given by (BπAB−1π )(i , k) =
A(π(i), π(k)), for all i , k ∈ I. Finally, note that when I = J, then an I × I bijection matrix
agrees with the usual notion of a permutation matrix on I.

2.9 Logics and complexity classes

We conclude this chapter by reviewing some common concepts in both computational and

descriptive complexity theory. For further background on descriptive complexity see e.g.

Ebbinghaus and Flum [23] while Papadimitriou’s textbook [59] is an excellent reference on

computational complexity.

2.9.1 Computational complexity

We brie�y recall the de�nition of some of the common complexity classes we will frequently

encounter in this thesis. We write PTIME to denote the set of languages decidable in de-

terministic polynomial time and write NP to denote the set of languages decidable in non-

deterministic polynomial time. We also consider space-bounded computation, where the

computational model is a Turing machine with a separate work tape. Since only the space

used on the work tape is counted towards the space usage during a computation, this model

allows us to consider sub-linear space complexity. In particular, we consider logspace compu-
tations, where the amount of space used is at most logarithmic in the input size. In this way,

we write L to denote the class of languages decided by a deterministic logspace machine and

write NL to denote the class of languages decided by a non-deterministic logspace machine.

2.9.2 Logics capturing complexity classes

Intuitively, a logic L captures a complexity class C on a class of �nite structures K if the L-
de�nable properties of structures in K are precisely those that are decidable in C. In order
to de�ne this relation more formally, we need to establish some notation for encoding �nite

relational structures as strings over Σ ∶= {0, 1}. Our presentation follows that of Libkin [52].
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Let τ = (R1, . . . , Rs , c1, . . . , ct) be a vocabulary, where the Ri are relation symbols and the
ci are constants. Let A be a τ-structure of size n and consider a linear ordering < of U(A).
Write U(A) = {a1, . . . , an} where the elements of U(A) are ordered a1 < a2 < ⋯ < an by
<. A string encoding of A, with respect to the ordering <, can now be de�ned as follows.
For each k-ary relation symbol R ∈ τ, consider an enumeration of all k-tuples of elements of
U(A), in the lexicographic ordering induced by <. �at is, we enumerate k-tuples as

(a1, . . . , a1), (a1, . . . , a2), . . . , (an , . . . , an−1), (an , . . . , an),

and write a⃗ j for the j-th tuple in this enumeration. �en the relation RA is encoded by an

nk-bit string enc(RA, <) where the j-th bit of enc(RA, <) is 1 if and only if a⃗ j ∈ RA and 0

otherwise.

Constants can be encoded similarly, by viewing each constant as a unary relation contain-

ing exactly one element. Putting this all together, we write enc(A, <) for the string encoding
of A with respect to < de�ned by

enc(A, <) ∶= 0n1 ⋅ enc(RA
1 , <)⋯enc(RA

s , <) ⋅ enc(cA1 , <) ⋯ enc(cAt , <),

where a ⋅ b denotes the concatenation of strings a and b.

Let K be a class of �nite τ-structures. Overloading our notation, we write enc(K) ⊆ Σ∗ to
denote the language de�ned by

enc(K) ∶= {enc(A, <) ∣ A ∈ K and < a linear ordering of U(A)}.

We can now de�ne the capturing relation between complexity classes and logics more for-

mally as follows.

De�nition 2.17 (Logics capturing complexity classes). Let C be a complexity class, L a logic,
andK a class of �nite structures.

• We write L ≦K C if for every L-sentence φ, there is a language A ∈ C such that

enc(Mod(φ)) ∩ enc(K) = A∩ enc(K).

In other words, L ≦K C if for every L-sentence φ, the problem of deciding if A ⊧ φ,
given A ∈ K, belongs to C.

• We write C ≦K L if for every class KP ⊆ K for which there is a language A ∈ C with
A∩ enc(K) = enc(KP), there is an L-sentence φP such that Mod(φ) ∩ K = KP .

In other words, C ≦K L if for every property P of structures from K which can be
decided with complexity C, there is an L-sentence φP for which it holds that for every
A ∈ K, A ⊧ φP if and only A has the property P.

• Finally, we say that L captures C on K, and write L ≡K C, if C ≦K L and L ≦K C.

∎

Note that whenK is the class of all �nite structures, then we usually omit the subscript to the
above relations, and simply write L ≡ C, C ≦ L and L ≦ C.



Chapter 3

Linear algebra in �xed-point logic
with counting

�e results of Atserias, Bulatov and Dawar [4] show that the problem of deciding solvability

of systems of linear equations over a �nite �eld is not de�nable in IFPC. Recall that by ele-

mentary linear algebra, a system of linear equations Ax = b over a �eld is solvable if and only
if rank(A ∣ b) = rank(A), where (A ∣ b) is thematrix obtained from A by adding the column
vector b on the right. It then follows that IFPC is not expressive enough to de�ne the rank of
a matrix over a �nite �eld. However, this result does not directly imply the non-de�nability

of other important matrix properties. In particular, is IFPC expressive enough to de�ne the

determinant of a matrix?
In this chapter we study the descriptive complexity of various problems in linear algebra.

�is follows up on the work of Blass, Gurevich and Shelah [9], who considered the problem

of deciding if a matrix is singular. �is problem lies in PTIME and it is shown that it can be

expressed in IFPC for both integer and �nite �eld matrices. Recall that over a �eld, a matrix

A is singular if and only if its determinant det(A) is zero. Blass et al. [9] note that over the
two-element �eld GF2, the determinant can therefore be expressed in IFPC by testing for
singularity. In this chapter we generalise this result, by showing that over any �nite �eld the

characteristic polynomial (and thereby, the determinant) of a matrix can be de�ned in IFPC.

�e same result is obtained formatrices with integer and rational entries. Moreover, we show

that for matrices over the �eld of rationals, both the rank and the minimal polynomial can

also be de�ned in IFPC. �is demonstrates that it is really the inability of IFPC to de�ne

matrix rank over �nite �elds that separates the logic from PTIME.

We begin this chapter in §3.1 by de�ning a representation of matrices over Z, Q and �nite
�elds as �nite relational structures. In §3.2 we show that various structural properties of �nite

�elds, given explicitly by their addition and multiplication tables, can be de�ned in IFPC. In

particular, we show that a linear ordering can be de�ned over any �nite �eld and that over

�elds of non-prime cardinality, we can de�ne a representation of the �eld elements in terms

of polynomials in a certain polynomial ring.

We shi� our attention to integer- and rational-valuedmatrices in §3.3, where we consider

the de�nability of various arithmetic operations on matrices. We show that the product AB
of matrices A and B, matrix powers Am, for m ≥ 0, and the trace tr(A) can all be de�ned in
IFPC. �e results of the previous sections are combined in §3.4 to show that the characteristic

29
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polynomial and the determinant of integer and rational matrices can be de�ned in IFPC. By

an appropriate translation of the underlying �eld, this implies that the characteristic polyno-

mial and the determinant of matrices over �nite �elds can also be de�ned. �is extends the

results of Blass, Gurevich and Rossman [7], who show that the characteristic polynomial can

be de�ned in the formalism of choiceless polynomial time with counting, which subsumes

IFPC.

Finally, §3.5 focuses on matrices with elements from the �eld of rationals. For such ma-

trices, it is shown that both the rank and the minimal polynomial can be de�ned in IFPC.

3.1 Matrices as relational structures

We consider matrices whose rows and columns are indexed by arbitrary sets, not necessarily

ordered. Let R be a commutative ring with a multiplicative identity and let I, J be �nite, non-
empty sets. We consider an I × J matrix A over R as a function A ∶ I × J → R. Here the rows
of A are indexed by I and the columns of A are indexed by J. We write A = (ai j) to denote
that A(i , j) = ai j for all i ∈ I and j ∈ J. We writeMI×J(R) for the set of I × J matrices over R,
and letMI(R) ∶= MI×I(R).

In the following we consider matrices over three kinds of domain: �nite �elds, the ring of

integers and the �eld of rationals.

3.1.1 Matrices over �nite �elds

Over a �nite �eld F, we can represent a matrix A = (ai j) ∈ MI×J(F) as a �nite, relational
structure. We consider two di�erent representations.

• �e�eld F is part of the vocabulary.We consider A as a two-sorted structureA over
the vocabulary τF = {M f ∣ f ∈ F}, where M f is a binary relation for each f ∈ F.
�e two sorts of A are the row sort I and the column sort J. �e relations M f are
interpreted as

MA
f = {(i , j) ∈ I × J ∣ ai j = f },

for each f ∈ F.

• �e �eld F is part of the structure.We consider A as a three-sorted structure A with
row sort I, column sort J and domain sort D. Here the last sort is interpreted as the
elements of the �eld F. Write τ�eld ∶= {+f,×f, 0f, 1f} for the vocabulary of �elds. �en
the vocabulary ofA is τfmat ∶= {M}∪ τ�eld, where (D,+Af ,×Af , 0Af , 1Af ) is the �eld F and
the ternary relationM is interpreted as

MA = {(i , j, d) ∈ I × J × D ∣ ai j = d}.

Herea�er, we will assume that all matrices over �nite �elds are given as �nite τfmat-structures
in this way. �e bene�t of this representation is that it allows us to consider �elds that are

not �xed. Note that this is without any loss of generality, for it can be seen that for each �nite

�eld F, there is a �rst-order interpretation Γ of τfmat in τF , such that for every τF-structure
A, A and Γ(A) represent the same matrix.
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Remark. Both these representations could also be used to describe matrices over a �nite ring
R. However, we do not consider �nite rings on their own (that is, other than as a part of a
�nite �eld) anywhere in this thesis, so this will not be studied further.

3.1.2 Integer and rational matrices

To represent unordered integer and rational matrices as �nite structures, we follow the con-

vention of Blass et al. [9] andwritematrix entries in binary notation. LetA = (ai j) ∈ MI×J(Z)
be an integer matrix and let m = max{abs(ai j) ∣ i ∈ I, j ∈ J} be the maximum absolute
value of integers appearing in A. Let b = ⌈log2(m)⌉, B = [0, b] and write bit(x , k) to de-
note the k-th least-signi�cant bit in the binary expansion of x ∈ Z. �en we consider A as a
three-sorted structure A, with row sort I, column sort J and bit sort B, over the vocabulary
τZ = {M , P, ≤B}. Here≤B is interpreted as a linear ordering of B, PA = {(i , j) ∈ I×J ∣ ai j ≥ 0}
identi�es the non-negative elements of A, and the ternary relationM is interpreted as

MA = {(i , j, k) ∈ I × J × B ∣ bit(abs(ai j), k) = 1}.

�at is, (i , j, k) ∈ MA when “the k-th bit in the binary expansion of abs(ai j) is 1”. Observe
that the role of ≤B is only to order the set of bit positions B, which we commonly view as
an initial segment of the integers. In particular, the rows and columns of the matrix MA are

themselves unordered.

Matrices with rational entries can be treated similarly by handling numerators and de-

nominators of matrix elements separately. �at is, we consider matrices over the vocabulary

τQ = {Mn,Md, P, ≤B}, where ≤AB and PA are de�ned as before, and the ternary relationsMA
n

andMA
d
de�ne the numerators and denominators of elements in A, respectively.

3.2 Describing �nite �elds in IFPC

In our chosen representation of �nite-�eld matrices, the underlying �eld is given explicitly

as a part of the matrix structure by its addition and multiplication tables. In [9], Blass et al.

consider a similar representation, where they assume that the �eld elements are linearly or-

dered. In this section we show that this assumption is not necessary in the current context,

as we can already de�ne a linear ordering over any �nite �eld in FOC+DTC ≦ IFPC. Here,
FOC+DTC is the extension of FOC with operators for de�ning deterministic transitive clo-
sure. Moreover, we also show how to de�ne in FOC+DTC or IFPC many important struc-
tural properties of �nite �elds. In particular, for a �eld F of cardinality pd , with d > 1 and p
prime, we de�ne in IFPC a representation of elements of F as polynomials of degree less than
d over Zp. �is will play a crucial role in our construction of the characteristic polynomial
in §3.4.

�e remainder of this section is split into two parts. In §3.2.1 we consider �elds F of
prime cardinality p. Our main result is that an isomorphism F → Zp can be de�ned by a
�xed formula of FOC+DTC over any �eld F of prime cardinality p. �is in turn gives a
way to canonically order the elements of F according to the natural ordering of the integers
{0, . . . , p − 1}, as claimed. For the case when F has cardinality pd , with d > 1, we show in
§3.2.2 that there is a formula of FOC+DTC that de�nes the set of all primitive elements of F,
which are the cyclic generators of the multiplicative group F×. It follows easily that for each
primitive element α ∈ F, there is an FOC+DTC-de�nable linear ordering of F, dependent
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only on α. Since the number of primitive elements is generally greater than one, this of
course does not give us a canonical ordering of F, but rather a collection of linear orderings.
However, we generally only consider queries over ordered structures that are order-invariant,
so this makes no di�erence with respect to de�nability as we can take the conjunction over

the set of all orderings. Finally, we show that we can de�ne the minimal polynomial of any

primitive element by a formula of IFPC. �is allows us to represent the elements of F as
polynomials in a �nite polynomial ring, as discussed above.

Remark. All the results here on de�nability in FOC+DTC could be stated directly in terms
of IFPC, which is a�er all the focus of this chapter. However, the reason for emphasising

FOC+DTC is that in Chapter 4 we will apply the results here also to extensions of �rst-order
logic with rank operators, which subsume FOC+DTC but not IFPC.

3.2.1 Prime �elds

Let F be a �nite �eld with p elements, where p is prime. In this sectionwe show how to de�ne
by a �xed formula of FOC+DTC an isomorphism F → Zp. Here the �eld Zp consists of the
integers {0, . . . , p − 1}, with addition and multiplication carried out modulo p. Speci�cally,
we will prove the following lemma.

Lemma 3.1 (Isomorphism of prime �elds). �ere is an FOC+DTC number term η(z) in
vocabulary τ⋆�eld, where z is an element variable, for which it holds that for any τ�eld-structure
F of prime cardinality p, the map

η(z)F⋆ ∶= {( f , η[ f ]F⋆) ∣ f ∈ U(F)}

is an isomorphism of �elds F→ Zp.

Proof. Given two prime �elds F and K of the same cardinality p, we can explicitly construct
an isomorphism F → K as follows. Since the �eld F has characteristic p, each element can
be uniquely written in the form

k ⋅ 1f = 1f +f ⋅ ⋅ ⋅ +f 1f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times

,

where 1f is the multiplicative identity of F and 0 ≤ k ≤ p − 1. Similarly, each element of G
can be written uniquely in the form k ⋅ 1G , 0 ≤ k ≤ p − 1. It is easily veri�ed that the map
φ ∶ F → G, k ⋅ 1f ↦ k ⋅ 1G is an isomorphism of �elds.

Now suppose we have a formula ψ(z, υ) which relates an element variable z and a number
variable υ whenever z = 1f ⋅υ, where 1f denotes the multiplicative constant symbol of τ�eld. By
the above discussion, ψ(z, υ) is necessarily the graph of an injective function. We can then
de�ne the required number term η(z) as follows:

η(z) ≡ #w(∃υ ∃µ (µ < υ) ∧ ψ(z, υ) ∧ ψ(w , µ)),

which counts the number of elements w that appear before z in the sequence of elements
0f, 1f, 1f ⋅ 2, 1f ⋅ 3, . . . .
It remains to show that we can de�ne the formula ψ(z, υ) in FOC+DTC. De�ne a for-

mula θ(x1, υ1, x2, υ2) ≡ (υ2 = υ1 + 1N)∧ (x2 = x1 +f 1f), where we write + (without subscript)
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for addition of integers over the number sort and write +f for addition of �eld elements over
the element sort. Viewed as a binary relation over pairs of elements of the type ‘(�eld element,

number)’, θ relates (x1, υ1) to (x2, υ2) exactly when x2 is the successor of x1, with respect to
the ordering of the �eld elements, and υ2 is the successor of υ1, with respect to the ordering
of the integers. It follows that z = 1f ⋅ µ exactly when there is a path from (0f, 0G) to (z, µ)
in the graph de�ned by θ. It can be seen that this graph is deterministic, and the desired
formula is given by

ψ(z, υ) ≡ [dtcx1µ1 ,x2µ2θ](0f, 0G , z, υ).

As a direct corollary of this lemma, we see that there is a formula of FOC+DTCwhich de�nes
a linear ordering over any prime �eld in vocabulary τ�eld.

Corollary 3.2 (Linear ordering over prime �elds). �ere is an FOC+DTC-formula φ(x , y)
in vocabulary τ⋆�eld, where x and y are element variables, for which it holds that for any τ�eld-
structure F of prime cardinality, the binary relation φ(x , y)F⋆ is a linear ordering of U(F).

3.2.2 Prime-power �elds

Let F be a �nite �eld of cardinality pd , where p is prime and d > 1 an integer, and write
K ∶= GFp for the prime sub-�eld of F of cardinality p. �e �eld F is commonly represented
as a quotient ring K[X]/(g(X)) where g(X) is a monic irreducible polynomial of degree
d over K. �is was explained in more detail in §2.7.2. One way to de�ne a polynomial of
this kind is to construct the minimal polynomial over K of some primitive element. Recall
from §2.7.2 that a primitive element of F is any generator of the multiplicative group F×.
�e minimal polynomial for a primitive element α ∈ F over K is de�ned to be the least
monic polynomial f (X) ∈ K[X] such that f (α) = 0. �e polynomial f (X) is irreducible
over K[X], by de�nition, and has degree d, as required (see e.g. Lidl and Niederreiter [53,
Chapter 3]).

In this section we consider the de�nability of various properties of prime-power �elds.

In particular, we show that there is a formula of IFPC that de�nes over any τ�eld-structure
F a monic irreducible polynomial of degree d over GFp, where ∥F∥ = pd . To do that, we
�rst show that the collection of primitive elements of F can be de�ned by a formula of
FOC+DTC. As a consequence of this construction, we obtain for each �xed primitive el-
ement α an FOC+DTC-de�nable ordering of the �eld F. Finally, we show that for each
primitive element α there is an IFPC formula that de�nes its minimal polynomial over F.

�e �rst step in our construction is to establish the following lemma, which shows that the

operation of raising �eld elements to an integer power (that is, repeated multiplication in the

�eld) can be de�ned in FOC+DTC.

Lemma 3.3 (Powering of �eld elements). Consider element variables x and y and a number
variable υ. �ere is an FOC+DTC formula pow(x , υ, y) in vocabulary τ⋆�eld, for which it holds
that for any τ�eld-structure F and any g , h ∈ U(F) and m ∈ N0,

F⋆ ⊧ pow[h,m, g] ⇔ hm ∶= h ×Ff ⋯×Ff h
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m times

= g .
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�eproof of this lemma is very similar to the proof of Lemma 3.1 above but we give the details

for completeness.

Proof. De�ne a formula θ(z1, µ1, z2, µ2; x) ≡ (µ2 = µ1 + 1N) ∧ (z2 = z1 ×f x), where we
write + (without subscript) for addition of integers over the number sort and write ×f for
multiplication of �eld elements over the element sort. Here, x, z1 and z2 are element variables
and µ1 and µ2 are number variables. Treating x as a parameter, we can view θ as a binary
relation of type ‘(�eld element, number)’ which relates (z1, µ1) to (z2, µ2) exactly when z2 is
z1 multiplied by x and µ2 is the successor of µ1, with respect to the ordering of the integers.
It follows that y = xυ ∶= x ×f ⋯ ×f x (υ times) exactly when either both y and υ are zero (0f
and 0N , respectively) or there is a path from (x , 1N) to (y, υ) in the graph de�ned by θ with
�xed parameter x. It can be seen that this graph is deterministic and the desired formula is
given by

pow(x , υ, y) ≡ ((υ = 0N) ∧ (y = 0f)) ∨ [dtcz1µ1 ,z2µ2θ](x , 1N , z, υ; x).

As a direct corollary of Lemma 3.3, we can see that the set of primitive elements of any �nite

�eld can be de�ned in FOC+DTC, simply by checking for each �eld element α if every other
non-zero element can be expressed as a power of α. Clearly, this happens if and only if α is
primitive.

Corollary 3.4 (Primitive elements). �ere is an FOC+DTC formula prim(x) in vocabulary
τ⋆�eld for which it holds that for any τ�eld-structure F, prim(x)F⋆ is the collection of primitive
elements of F.

Let F be a �nite �eld with multiplication written as × and multiplicative identity 1F . For a
primitive element α ∈ F, we de�ne the α-order of an element g ∈ F× to be the integer m for
which αm = α × ⋯ × α = g. Here, α0 is taken to be 1F . Since the multiplicative group F× is
generated by α, the α-order is well-de�ned. �e following corollary now follows immediately
from Lemma 3.3 and Corollary 3.4.

Corollary 3.5 (α-order of �eld elements). Consider element variables x and y. �ere is an
FOC+DTC number term ord(x , y) in vocabulary τ⋆�eld, for which it holds that for any τ�eld-
structure F, any primitive element α ∈ U(F) and any g ∈ U(F), ord[α, g]F⋆ = m is the α-order
of g in F; that is,

αm ∶= α ×Ff ⋯×Ff α
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m times

= g .

For a �xed primitive element α ∈ F, we can de�ne a linear ordering ⩽α of F by setting g ⩽α h
if and only if the α-order of g is at most the α-order of h, for all g , h ∈ F×, and setting 0F ⩽α g
for all g ∈ F. Applying Corollary 3.5, this relation can clearly be de�ned in FOC+DTC, as
stated in the following.
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Corollary 3.6 (Linear ordering over prime-power �elds). �ere is an FOC+DTC-formula
φ(x , y, z) in vocabulary τ⋆�eld, where x, y and z are element variables, for which it holds that
for any τ�eld-structure F and any primitive element α ∈ U(F), the binary relation

φ(x , y, α/z)F⋆ = {(g , h) ∈ U(F) ∣ F⋆ ⊧ φ[g , h, α]}

is a linear ordering of U(F).

It remains to show that the minimal polynomial of a primitive element can be de�ned in

IFPC. For that, we need to be able to encode polynomials over pairs (F, α), where F is a
τ�eld-structure and α ∈ U(F) a primitive element. Here we crucially rely on being able to
de�ne a linear ordering ⩽α of U(F) (with respect to α), as discussed above and described by
Corollary 3.6. To simplify our notation we will herea�er assume that the universe of a τ�eld-
structure F of cardinality m, given a primitive element α ∈ U(F), consists of the integers
{0, 1, . . . ,m− 1}, with ⩽α interpreted as the standard ordering of the integers. �is is without
any loss of generality, for we can always de�ne a bijection ι ∶ U(F) → {0, . . . ,m − 1} as a
number term in FOC by

ι(x) ≡ #y((y ⩽α x) ∧ (y ≠ x)).

Now consider a number term π(x) in vocabulary τ�eld, where x is an element variable. Given
a τ�eld-structureF, a primitive element α ∈ U(F) and an integerm, wewrite polyx(π, F, α,m)
to denote the integer polynomial amXm + ⋅ ⋅ ⋅ + a1X + a0, where ai = π[i]F⋆ for each i ≤ m
in U(F).

Lemma 3.7 (Minimal polynomials). �ere is an IFPC number term minpoly(x , y) in vocab-
ulary τ�eld for which it holds that for any τ�eld-structure F and primitive element α ∈ U(F), the
polynomial

polyx(minpoly(x , α/y), F, α, d) mod p

is the minimal polynomial of α over GFp, where ∥F∥ = pd and p is a prime.

Proof. Consider a �nite �eld F of cardinality pd , p prime, and write K to denote the prime
�eldZp. We �rst describe a general polynomial-time procedure for constructing theminimal
polynomial over K of a primitive element α ∈ F. �en we show how this procedure can be
turned into a �xed-point formula over τ�eld-structures.
To de�ne the minimal polynomial of a primitive element α, we �rst generate a list Π of

all polynomials in K[X] of degree at most d. �ere are exactly pd+1 of those polynomials;
alternatively, we can reduce this number to pd by ignoring all polynomials of degree exactly
d that are not monic. Let ⩽poly be the ordering on Π de�ned by

adXd + ⋅ ⋅ ⋅ + a1X + a0 ⩽poly bdXd + ⋅ ⋅ ⋅ + b1X + b0
∶⇔adad−1⋯a1a0 ≤lex bdbd−1⋯b1b0,

where adad−1⋯a1a0 and bdbd−1⋯b1b0 are strings over {0, . . . , p−1}∗ and ≤lex is the standard
lexicographic ordering on {0, . . . , p − 1}∗. To generate the list Π we enumerate the polyno-
mials in increasing ⩽poly-order, starting with the constant polynomial g(X) = 1. Now we can
construct the minimal polynomial of α over K by

(1) building the set Π of polynomials in K[X] of degree at most d;
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(2) de�ning the set Πann ⊂ Π of monic polynomials in Π that annihilate α — i.e. each
g ∈ Πann satis�es g(α) = 0; and

(3) �nding the least element in Πann with respect to ⩽poly, which will be theminimal poly-
nomial.

Constructing Π takesO(pd) steps, while the number of steps required for constructing Πann
is ∥Π∥ times the number of steps to decide for each g ∈ Π if α is a root. Evaluating g(α) = 0
requiresO(d2)multiplications andO(d) additions of elements from K. Finally, �nding the
least element of Πann requires a linear number of ⩽poly-comparisons, each of which takes
O(d) steps. �e overall algorithm takesO(pdd2) steps, which is polynomial in ∥F∥ = pd .

Let Min-Polynomial (F , i , α, k) be the problem of deciding whether the coe�cient of X i in
theminimal polynomial f (X) overK of a primitive element α is k, where i and k are integers
and the �eld F is given explicitly by its multiplication and addition tables. �is problem is in
PTIME by our discussion above. We can de�ne a linear ordering of structures of vocabulary

τ�eld, given a �xed primitive element, so by the Immerman-Vardi�eorem there is a formula
mincoeff(x , y, z) of IFP for which it holds that for any τ�eld-structure F and i , α, k ∈ U(F),
with α a primitive element,

(F, i , α, k) ⊧ mincoeff(x , y, z) if, and only if, the coe�cient of X i in the mini-
mal polynomial f (X) of α over K is k.

Here we are assuming that U(F) consists of the integers {0, . . . , pd − 1}, as noted earlier.
Finally, the required IFPC-formulaminpoly(x , y) is given by

minpoly(x , y) ≡ #w(∃z (mincoeff(x , y, z) ∧ (w ≤ z) ∧ (w ≠ z))).

Let F be a �nite �eld of cardinality pd with a primitive element α ∈ F. Write f (X) for the
minimal polynomial of α over K = Zp. �en an isomorphism ι ∶ F ≅ K[X]/( f (X)) can be
explicitly given by

g ↦ h(X) ∶⇔ h(α) = g ,

for all g ∈ F. �is is well-de�ned, since every element of F can be written uniquely as a linear
combination over K of elements in {1F , α, α2, . . . , αd−1}. For instance, if g ∈ F has α-order
m, then g can be written as αm mod f (α) in this way. �is expression has to be unique,
since f (X) is a minimal polynomial. By putting this together with Lemma 3.7, we obtain the
following theorem, which says that the isomorphism ι can be de�ned in IFPC. �is theorem
will be crucial for our construction of characteristic polynomial of �nite-�eld matrices in

§3.4.

Corollary 3.8 (Isomorphism of prime-power �elds). �ere is an IFPC number term η(x , y)
in vocabulary τ⋆�eld, where x and y are element variables, for which it holds that for any τ�eld-
structure F of cardinality pd and any primitive element α ∈ U(F), the map de�ned for all
g ∈ U(F) by

g ↦ polyx(η(x , g/z), F, α, d) mod p,
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is an isomorphism of �elds F ≅ (Zp)[X]/( f (X)), where we write

f (X) ∶= polyx(minpoly(x , α/y), F, α, d) mod p.

3.3 Describing integer and rational matrices in IFPC

In [9], Blass et al. showed that standard arithmetic operations on matrices, such as multi-

plication and exponentiation, can be de�ned in IFPC for matrices over �nite �elds. In this

chapter, we establish similar results for integer and rational matrices. �ese will be crucial

later on for our construction of characteristic and minimal polynomials in §3.4 and §3.5.

In order to describe our results, we �rst establish in §3.3.1 some notation for specifying

matrices by terms and formulae. In this notation, we can describe one matrix in terms of

others by a substitution of formulae. In §3.3.2 we establish further notation, this time for

working with integers in binary representation. Furthermore, we prove some basic technical

results, showing that arithmetic over unordered collections of binary numbers can be ex-

pressed in IFPC. Using these results, we show in §3.3.3 how to de�ne in IFPC the product

AB, when A and B are matrices of the appropriate dimension over Z orQ. Finally, we show
in §3.3.4 that for any square matrix A over Z orQ and any integerm ≥ 0, the matrix Am and
the trace tr(A) are de�nable in IFPC.

3.3.1 Specifying matrices over Z andQ by formulae

When describing matrices in the two-sorted logic IFPC, it can simplify our notation to have

a standard speci�cation given by formulae and number terms. In the following we de�ne a

speci�cation of this kind, which will be used to describe arithmetic operations on matrices

later on.

Let x⃗ and y⃗ be tuples of element variables and let υ be a number variable. Consider a number
term t and formulae φd , φn andψ in vocabulary τ where free(t) = ∅ and all the free variables
of φn, φd and ψ are amongst the variables in x⃗ ∪ y⃗ ∪ {υ}. Here the role of υ is to index the
binary expansion of matrix elements over the number sort, bounded by the number term t.
Consider a τ-structure A and tuples a⃗ ∈ U(A)∥x⃗∥ and b⃗ ∈ U(A)∥ y⃗∥. Let

Γn(A, a⃗, b⃗) ∶= {i ≤ tA
⋆ ∣ A⋆ ⊧ φn[a⃗, b⃗, i]} and

Γd(A, a⃗, b⃗) ∶= {i ≤ tA
⋆ ∣ A⋆ ⊧ φd[a⃗, b⃗, i]}

denote the collections of integer assignments to υ that satisfyφn(a⃗/x⃗ , b⃗/ y⃗, υ) andφd(a⃗/x⃗ , b⃗/ y⃗, υ)
in A⋆, respectively. De�ne integers

na⃗b⃗ = ∑
i∈Γn(A,a⃗,b⃗)

2
i
,

da⃗b⃗ = ∑
i∈Γd(A,a⃗,b⃗)

2
i
, and

sa⃗b⃗ =
⎧⎪⎪⎨⎪⎪⎩

1 if A⋆ ⊧ ψ[a⃗, b⃗]
−1 otherwise.
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If da⃗b⃗ ≠ 0 for all a⃗ and b⃗, then we write matx⃗ , y⃗,υ(φn , φd ,ψ, t,A) to denote the U(A)∥x⃗∥ ×
U(A)∥ y⃗∥ rational matrix M = (ma⃗b⃗) whose entry at row index a⃗ and column index b⃗ is
given by

ma⃗b⃗ ∶= sa⃗b⃗ ⋅
na⃗b⃗
da⃗b⃗
.

Here the formulae φn and φd encode the numerators and denominators of elements of M,
respectively, and ψ identi�es the set of non-negative elements of M. In other words, the
tuple (φn(x⃗ , y⃗, υ), φd(x⃗ , y⃗, υ),ψ(x⃗ , y⃗), t) describes an interpretation of τQ in τ of width
max{∥x⃗∥, ∥ y⃗∥}, where we omit the trivial domain-de�ning and equality-de�ning formulae
δ and ε, respectively, and the linear ordering of bit positions is just the natural ordering over
the number sort (see §2.2.5 for more details). Here the role of the integer tA⋆ ∈ N0 is to
denote the maximum bit length of all the matrix elements, so that

∀υ > t ¬(∃x⃗ y⃗ (φn(x⃗ , y⃗, υ) ∨ φd(x⃗ , y⃗, υ))).

Integer matrices can be described similarly, by setting all denominators to one. In this way,

for a triple (φ(x⃗ , y⃗, υ),ψ(x⃗ , y⃗), t) we write matx⃗ , y⃗,υ(φ,ψ, t,A) to denote the U(A)∥x⃗∥ ×
U(A)∥ y⃗∥ integermatrix, de�ned like above by setting da⃗b⃗ = 1 for all row indices a⃗ and column
indices b⃗.

3.3.2 Binary arithmetic

Let τ be a vocabulary and consider a formula η(υ) and a number term t in IFPC[τ], where
υ is a number variable. Given a τ-structure A, we write

(η(υ), t)A ∶= {i ∣ 0 ≤ i ≤ tA
⋆ ∧A⋆ ⊧ η[i]}.

�at is, the pair (η(υ), t) de�nes over A the tA⋆-bit binary encoding of an integer m, where
m = ∑i∈(η,t)A 2

i . We write binencυ(η, t,A) ∈ N0 to denote the integer de�ned in this way by
(η(υ), t) over A.
Let γ(x⃗ , υ) be an IFPC[τ]-formula, where x⃗ are element variables and υ is a number vari-

able, and let t be an IFPC[τ]-number term. �e pair (γ(x⃗ , υ), t) de�nes over A a collection
of ∥U(A)∥∥x⃗∥ integers

binsetx⃗ ,υ(γ, t,A) ∶= {(binencυ(γ(a⃗/x⃗ , υ), t,A) ∣ a⃗ ∈ U(A)∥x⃗∥} ⊆ N0,

where γ(a⃗/x⃗ , υ) is obtained from γ(x⃗ , υ) by replacing every occurrence of x⃗ with a⃗. �e
following lemma shows that there is a formula of IFPC which de�nes over any structure A
the number which is the sum of all elements in the collection binsetx⃗ ,υ(γ, t,A).

Lemma 3.9 (Sums of binary numbers). Let γ(x⃗ , υ) be an IFPC[τ]-formula, where x⃗ are ele-
ment variables and υ is a number variable, and let t be an IFPC[τ]-number term. �ere is an
IFPC-formula sum(υ) and a numeric IFPC-term s, such that for all τ-structures A,

binencυ(sum, s,A) = ∑
m∈binsetx⃗ ,υ(γ,t,A)

m.

Remark. In the statement of this lemma, the number term s gives an upper bound for the
number of bits in∑m∈binsetx⃗ ,υ(γ,t,A) m.
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Proof. We consider a simple ripple-carry algorithm for simultaneously adding together a
collection of integers in binary. Let bit ∶ N0 ×N0 → {0, 1} be the function that maps (i ,m)
to the i-th bit of m, for i ,m ∈ N0. Let bitcount ∶ N0 × ℘�n(N0) → N0 be the function

bitcount ∶ (i ,M) ↦ ∥{m ∈ M ∣ bit(i ,m) = 1}∥,

and let quot ∶ N0 → N0 be the function k ↦ ⌊k/2⌋. De�ne carry ∶ N0 × ℘�n(N0) → N0 by
induction for allM ⊂�n N0 as

carry(0,M) = quot(bitcount(0,M)),
carry(i + 1,M) = quot(bitcount(i + 1,M) + carry(i ,M)) ∀i ≥ 1.

In other words, carry(i ,M) is the number of bits carried over from bit position i to bit
position i + 1 when adding together all the elements in M. Now we can de�ne sumbit ∶
N0 × ℘�n(N0) → N0, where sumbit(i ,M) denotes the i-th bit in the binary expansion of
∑m∈M m, as follows.

sumbit(0,M) = bitcount(0,M) (mod 2),
sumbit(i + 1,M) = (bitcount(i + 1,M) + carry(i ,M)) (mod 2) ∀i ≥ 1.

Let γ(x⃗ , υ) be an IFPC[τ]-formula, where x⃗ is a k-tuple of element variables, and let t be a
number term of IFPC[τ]. It is straightforward to turn the above algorithm into a formula,
using the ifp-operator. De�ne

φbits(υ) ≡ #x⃗γ(x⃗ , υ),
φodd(κ) ≡ #ν(∃µ ≤ κ.2µ + 1 = κ) and

φquot(κ, µ) ≡ (2κ = µ) ∨ (2κ + 1 = µ).

Here, φbits(υ) denotes the number of “1” bits at position υ over all x⃗ in γ(x⃗ , υ); the term
φodd(κ) is one if κ denotes an odd number and zero otherwise; and φquot(κ, µ) is a formula
that says that κ is the integer quotient of µ divided by two. Now let R be a binary relation
symbol of type {number, number} and de�ne the formulae

θ1(ι, κ, R) ≡((ι = 0) ∧ φquot(κ, φbits(ι)))∨
(∃µ.R(ι − 1, µ) ∧ φquot(κ, φbits(ι) + µ)) and

φ1(υ, η) ≡[ifpR,ικθ1(ι, κ, R)](υ, η).

If A is a τ-structure, then φ1(υ, η)A de�nes the graph of the function carry(i ,M), where
M = binsetx⃗ ,υ(γ, t,A)). Let

tcarry(υ) ≡ #µ(∃η.φ1(υ, η) ∧ (µ < η))

be the corresponding number term; that is, for all i, tcarry(υ)(A,i) = carry(i ,M), with M as
above. De�ne

θsum(ι, κ, R) ≡((ι = 0) ∧ (κ = φodd(φbits(ι))))∨
(φodd(φbits(ι) + tcarry(ι − 1, η)))) and

φsum(υ, κ) ≡[ifpR,ικθsum(ι, κ, R)](υ, η).

Finally, de�ne sum(υ) ≡ #µ(∃η.φsum(υ, η) ∧ (µ < η)), as required.
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All that remains is to show that we can construct a number term s for which it holds that
for any τ-structure A, sA is an upper bound for the the number of bits in the sum over all
elements in binsetx⃗ ,υ(γ, t,A). Consider a τ-structureA of size ∥A∥ = n. Each element in the
collection binsetx⃗ ,υ(γ, t,A) has at most m = tA bits, so the number of bits in the sum over
all elements in binsetx⃗ ,υ(γ, t,A) is at most

log(2mnk) = m + k log(n) ≤ m + kn.

�erefore, it can be seen that to get an upper bound for the number of bits in this sum for

any τ-structure, it su�ces to take the number term

s ≡ t + k ⋅ (#x(x = x)).

Here we write “k ⋅ (#x(x = x))” to denote the number term obtained by adding together k
terms #x(x = x), where the constant k is the number of distinct variables in x⃗.

3.3.3 Product of matrices

Let (η1(υ), t1) and (η2(υ), t2) be IFPC-de�nable speci�cations of binary numbers over sig-
nature τ. It is not hard to verify that there is an IFPC[τ]-formula prod(υ) and an IFPC[τ]-
number term t ≡ t1 + t2 such that for all τ-structures A,

binencυ(prod, t,A) = binencυ(η1, t1,A) ⋅ binencυ(η2, t2,A).

�is of course follows directly from the Immerman-Vardi theorem, as the bit positions are

linearly ordered over N0. In fact, the product can even be expressed by an FOC-formula,
by de�ning a lexicographic ordering of bit strings in FOC and applying Lemma 6.14 from

Libkin [52]. From this observation, and the results of the previous section, we can now prove

the following theorem.

�eorem 3.10 (Product of integer matrices). Let

Θ1 = (φ1(x⃗ , z⃗, υ),ψ1(x⃗ , z⃗), t1) and
Θ2 = (φ2(z⃗, y⃗, υ),ψ2(z⃗, y⃗), t2)

be IFPC-de�nable speci�cations of integer matrices over τ-structures. �en there is an IFPC-
de�nable matrix speci�cation

Θ×(Θ1, Θ2) = (φ×(x⃗ , y⃗, υ),ψ×(x⃗ , y⃗), t×),

such that for all τ-structures A,

matx⃗ , y⃗,υ(φ×,ψ×, t×,A) = matx⃗ ,z⃗,υ(φ1,ψ1, t1,A) ⋅matz⃗, y⃗,υ(φ2,ψ2, t2,A).

Proof. By our previous observation, there is a formula-termpair (prod(x⃗ , y⃗, z⃗, υ), t) in IFPC
(herewith additional parameters)which describes the product of (φ1(x⃗ , z⃗, υ), t1) and (φ2(x⃗ , z⃗, υ), t2),
with respect to υ. �e formula

ψprod(x⃗ , y⃗, z⃗) ≡ (ψ1(x⃗ , z⃗) ↔ ψ2(z⃗, y⃗))
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denotes the sign of the integer prod(x⃗ , y⃗, z⃗, υ). Now de�ne formulae

γ≥0(x⃗ , y⃗, z⃗, υ) ≡ ψprod(x⃗ , y⃗, z⃗) ∧ prod(x⃗ , y⃗, z⃗, υ) and
γ<0(x⃗ , y⃗, z⃗, υ) ≡ ¬ψprod(x⃗ , y⃗, z⃗) ∧ prod(x⃗ , y⃗, z⃗, υ),

which respectively denote the collection of nonnegative elements and the collection of neg-

ative elements prod(x⃗ , y⃗, z⃗, υ). Here each collection of integers is indexed by z⃗, with x⃗ and
y⃗ treated as parameters. By Lemma 3.9, there are formula-term pairs (sum≥0(x⃗ , y⃗, υ), s≥0)
and (sum<0(x⃗ , y⃗, υ), s<0) that denote the sum over γ≥0(x⃗ , y⃗, z⃗, υ) and γ<0(x⃗ , y⃗, z⃗, υ), respec-
tively, with respect to z⃗.
Nowwe can de�ne formulae φ×(x⃗ , y⃗, υ) andψ×(x⃗ , y⃗)which for all x⃗, y⃗ denote the abso-

lute value and sign, respectively, of the integer obtained by subtracting sum<0(x⃗ , y⃗, υ) from
sum≥0(x⃗ , y⃗, υ). Finally, let t× be the number term that de�nes the maximum of s≥0 and s<0.

Using the above result, it is straightforward to de�ne the product of rationalmatrices in IFPC.

Suppose A1 ∈ Mn×q(Q) and A2 ∈ Mq×m(Q) are rational matrices whose product we want.
We can rewrite each matrix as Ai = N−1

i Bi , where for i ∈ {1, 2}, Bi is an integer matrix of
the same dimension as Ai and Ni is the least common multiple of all integers appearing as
denominators of elements in Ai . �e product A1A2 = (N1N2)−1B1B2 can now be obtained
by separately calculating the product of two positive integers and the product of two integer

matrices.

Corollary 3.11 (Product of rational matrices). Let

Θ1 = (φ1,n(x⃗ , z⃗, υ), φ1,d(x⃗ , z⃗, υ),ψ1(x⃗ , z⃗), t1) and
Θ2 = (φ2,n(z⃗, y⃗, υ), φ2,d(z⃗, y⃗, υ),ψ2(z⃗, y⃗), t2)

be IFPC-de�nable speci�cations of rational matrices over τ-structures. �en there is an IFPC-
de�nable matrix speci�cation

Θ×(Θ1, Θ2) = (φ×,n(x⃗ , y⃗, υ), φ×,d(x⃗ , y⃗, υ),ψ×(x⃗ , y⃗), t×),

such that for all τ-structures A,

matx⃗ , y⃗,υ(φ×,n , φ×,d ,ψ×, t×,A)
= matx⃗ ,z⃗,υ(φ1,n , φ1,d ,ψ1, t1,A) ⋅matz⃗, y⃗,υ(φ2,n , φ2,d ,ψ2, t2,A).

Proof. For each i = 1, 2, we can order the collection of denominators φi ,d(x⃗ , z⃗, υ) using a
lexicographic ordering of binary numbers like the one we de�ned before. While this is not

a linear ordering, as some of the denominators may be repeated, we can de�ne over the

number sort the corresponding collection of si distinct denominators, in strictly increasing
order. Here si is a number term we can de�ne in terms of φi ,d(x⃗ , z⃗, υ) and the lexicographic
ordering. Let γi(µ, υ) de�ne this collection of distinct denominators, where µ ≤ si and υ ≤ ti
are number variables.

Because it is linearly ordered, we can now express any polynomial-time computation

over the collection of numbers de�ned by (γi(µ, υ), si) as an IFP formula. In particular, we
can de�ne the least common multiple of all numbers in the collection as a formula θ i(υ),
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where υ ≤ ri and ri ≡ si ti is an upper bound on the number of bits required. It is now
straightforward to de�ne formulae φ1(x⃗ , z⃗, υ) and φ2(z⃗, y⃗, υ) so that for all τ-structures A,

matx⃗ ,z⃗,υ(φ1,n , φ1,d ,ψ1, t1,A) = (binencυ(θ1, r1,A))−1 ⋅matx⃗ ,z⃗,υ(φ1,ψ1, t1 + r1,A) and
matx⃗ ,z⃗,υ(φ2,n , φ2,d ,ψ2, t2,A) = (binencυ(θ2, r2,A))−1 ⋅matx⃗ ,z⃗,υ(φ2,ψ2, t2 + r2,A).

�e proof now follows from�eorem 3.10 and our previous observation.

3.3.4 Exponentiation and trace of matrices

We can now de�ne formulae that express the exponentiation of any de�nable matrix by an

element of the number sort. Let Θ = (φ(x⃗ , y⃗, υ),ψ(x⃗ , y⃗), t) be a matrix speci�cation in vo-
cabulary τ and let κ be a number variable. A matrix Am, m ≥ 2, is de�ned only when A is
square, so we assume ∥x⃗∥ = ∥ y⃗∥ = k. Assume furthermore that all matrix entries are pos-
itive, that is ψ(x⃗ , y⃗) ≡ ⊺. �is is only to simplify the current presentation; matrices with
negative entries can be handled similarly. Let R be a relation symbol of type (elementk ,
elementk , number, number) and let ΘR = (R(x⃗ , y⃗, υ; κ),ψ(x⃗ , z⃗), s) be a matrix represen-
tation, where s ≡ κt is a number term. Here, the number variable κ is treated as a parameter.
Let Θ×(Θ,ΘR) = (φ×(x⃗ , y⃗, υ; κ),ψ×(x⃗ , y⃗), t×) denote the product of Θ and ΘR, as in �e-
orem 3.10. �en the exponentiation of the matrix Θ by the number term κ is de�ned by

power(x⃗ , y⃗, υ; κ) ≡[ifpR,x⃗ y⃗υκ((κ = 0) ∧ (x⃗ = y⃗))∨
∃µ ≤ κ.(κ = µ + 1) ∧ φ×(x⃗ , y⃗, υ; µ)](x⃗ , y⃗, υ; κ),

where we write x⃗ = y⃗ to denote ⋀i(xi = yi). �is construction resembles the one given
by Dawar in [16], except there the formula power is constructed using the least-�xed-point
operator, as opposed to ifp here. Now for every τ-structureA and any interpretationm ∈ N0
of the number variable κ,

matx⃗ , y⃗,υ(power,ψ×, s, (A,m)) = matx⃗ , y⃗,υ(φ,ψ, t,A)m .

We can de�ne the exponentiation of rational matrices very similarly.

Finally, we observe that we can de�ne in IFPC the trace of integer and rational matrices.

Recall that the trace of a square matrix A = (ai j) is de�ned as tr(A) ∶= ∑i aii . �e trace of
an integer matrix, denoted by a tuple (φ(x⃗ , y⃗, υ),ψ(z⃗, y⃗), t), with ∥x⃗∥ = ∥ y⃗∥, is just the sum
of all the binary numbers along the main diagonal, which can be de�ned in IFPC according

to Lemma 3.9. Similarly, the trace of a rational matrix can be de�ned by �rst expressing

the matrix as the product of a rational number and an integer matrix, as we have discussed

before.

3.4 Characteristic polynomial over Z,Q and �nite �elds

It has been observed by Rossman that Csanky’s algorithm [14] for computing the character-

istic polynomial (and thereby, the determinant) of a matrix over any commutative ring of

characteristic zero is expressible in the logic of choiceless polynomial time with counting.
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Blass and Gurevich [7] used this observation to show that the same logic can also express the

determinant of any de�nable matrix over a �nite �eld.

In this section we strengthen this result by showing that Le Verrier’s method for �nd-

ing the coe�cients of the characteristic polynomial of a matrix, which is the main building

block of Csanky’s algorithm, can already be expressed in IFPC for both integer and rational

matrices, as well as matrices over �nite �elds. We start by reviewing Le Verrier’s method; for

more details, see e.g. Faddeev and Faddeeva [25].

3.4.1 Overview of Le Verrier’s method

Let M be an n × n matrix over a commutative ring R of characteristic zero, n ≥ 1. �e
characteristic polynomial χM(x) ofM is

det(xI −M) = xn − p1xn−1 + p2xn−2 − ⋅ ⋅ ⋅ + (−1)npn

=
n
∏
i=1

(x − λi),

where λ1, λ2, . . . , λn are the eigenvalues of M, counted with multiplicities. �e coe�cients
p1, . . . , pn ∈ R of the characteristic polynomial can be written in terms of the eigenvalues as
follows:

pk = ∑
1≤i1<⋅⋅⋅<ik≤n

k
∏
j=1

λi j ,

for k ∈ [n]. �at is, the k-th coe�cient pk is the sum of all products of k distinct elements
from {λ1, . . . , λn}. In particular, pn = det(M) and p1 = ∑n

i=1 λi = tr(M), the trace ofM.

We now derive a linear recurrence for the coe�cients pk . �is recurrence can be solved to
obtain the coe�cients of χM(x) without actually knowing any of the eigenvalues. Let m ≥ 1
and de�ne sm ∶= tr(Mm), which can be written as

sm = tr(Mm) =
n
∑
i=1

λm
i ,

using the fact that Mm has eigenvalues λm
1 , . . . , λm

n (see e.g. Horn and Johnson [42]). Also
de�ne for k,m ≥ 1,

f mk ∶= ∑
1≤i1<⋅⋅⋅<ik≤n
l∉{i1 ,...,ik}

(
k
∏
j=1

λi j)(λl)m .

Multiply together pk and sm and simplify to obtain

pksm = ( ∑
1≤i1<⋅⋅⋅<ik≤n

k
∏
j=1

λi j)(
n
∑
i=1

λm
i ) = f m+1k−1 + f mk .

Using this equation, we write down a telescoping series

pks0 − pk−1s1 + ⋅ ⋅ ⋅ ∓ p1sk−1 + ±sk
= ( f 0k + f 1k−1) − ( f 1k−1 + f 2k−2) + ⋅ ⋅ ⋅ ± f k0
= f 0k = (n − k)pk
= (s0 − k)pk .
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�is gives us a linear recurrence for the coe�cient pk in terms of the coe�cients p1, . . . , pk−1:

pk = 1

k (pk−1s1 − pk−2s2 + ⋅ ⋅ ⋅ ± sk).

Treating each s j as a scalar coe�cient and each pk as a variable, we can write this linear
recurrence as a system of linear equations

Ax = b, (∗)

where x = (pn , . . . , p1)t , b = (± sn
n ,∓

sn−1
n−1 , . . . , s1)

t and

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 − s1
n . . . ± sn−2

n ∓ sn−1
n

0 1 . . . ∓ sn−3
n−1 ± sn−2

n−1
⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . 1 − s1

2

0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

Le Verrier’s method for �nding the coe�cients of χM(x) now consists of the following steps:

(1) for each k, compute sk from the trace of the k-th power ofM;

(2) construct the matrices A and b; and

(3) solve for the pk .

3.4.2 Characteristic polynomial over Z andQ

Here we consider the characteristic polynomial of matrices with rational entries; by setting

all denominators to 1, we can use the same approach to de�ne the characteristic polynomial

of integer matrices. Below we sketch a proof of the following theorem.

�eorem 3.12 (Characteristic polynomial overQ). �ere are IFPC-formulae θn
char(µ, υ) and

θd
char(µ, υ) in vocabulary τ⋆Q, where µ and υ are number variables, which for all square τQ-

matricesM satisfy:

• M ⊧ θn
char[k, i] i� the i-th bit of thenumerator of the coe�cient of xk in the characteristic

polynomial χM(x) ofM overQ is 1; and

• M ⊧ θd
char[k, i] i� the i-th bit of the denominator of the coe�cient of xk in the charac-

teristic polynomial χM(x) ofM overQ is 1.

Recall that for any n × n matrixM, the constant term of χM(x) takes value (−1)n ⋅ det(M).

Corollary 3.13 (Determinant over Q). �ere are IFPC-formulae θn
det(υ) and θd

det(υ) in vo-
cabulary τ⋆Q, where υ is a number variable, which for all square τQ-matricesM satisfy:

• M ⊧ θn
det[i] i� the i-th bit of the numerator of the determinant ofM overQ is 1; and

• M ⊧ θd
det[i] i� the i-th bit of the denominator of the determinant ofM overQ is 1.
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Toprove�eorem3.12, it is enough to show thatwe can describe the linear system (∗) in IFPC
over any square τQ-structureM. As outlined in §3.3, we can express in IFPC (a) the product
of two matrices; (b) a matrix raised to the power k, where k can be expressed as a number
term; and (c) the trace of a matrix. From this, it should be clear that we can de�ne the linear

system Ax = b from equation (∗) in IFPC over M. By the Immerman-Vardi theorem, we
can express any polynomial-time property of this linear system, because the matrices A and
b are de�ned on a linearly ordered subset of the number sort. In particular, we can express
Gaussian elimination as a �xed-point formula, use that to solve the system for x and hence
obtain the coe�cients of χM(x). �eorem 3.12 now follows.

3.4.3 Characteristic polynomial over �nite �elds

Le Verrier’s method involves division by integers up to the size of the matrix, so it cannot

be applied directly over �nite �elds F of positive characteristic. Instead, we �rst map the
input matrix to a ring of characteristic zero, apply Le Verrier’s method, and then reduce the

result back to get the speci�cation of the characteristic polynomial over F. �is approach
was suggested by Blass and Gurevich in [7]. We consider separately two cases, one when F
is a prime �eld and the other when F is a prime-power �eld.

Prime�elds. LetM be a square τfmat-matrix over a �nite �eldF, whereF is a τ�eld-structure
with p elements. By Lemma 3.1, there is an IFPC-de�nable isomorphism ι ∶ F→ Zp. Hence,
we can assume without loss of generality that the elements of M are integers in the range

[0, p−1]. To express the characteristic polynomial ofM over F, we (a) �rst mapM to amatrix
M+ over the ring of integers, (b) apply Le Verrier’s method toM+ overZ, and then (c) reduce
the result modulo p to get the speci�cation of the characteristic polynomial over F, with
integer coe�cients in the range [0, p− 1]. �e binary expansion of each element ofM can be
described in FOC, thereby de�ning the matrixM+ (see e.g. Libkin [52,�eorem 6.12]). Here
we use the fact that FOC has addition and multiplication over the number sort. Likewise,

the binary representations θn
char

(µ, υ) and θn
det

(υ) from �eorem 3.12 and Corollary 3.13,

respectively, can be reducedmodulo p to an integer in [0, p−1]with a formula of IFPC. Here
we use the fact that the bit positions are ordered and so we can express any polynomial-time

computation in �xed-point logic.

Prime-power �elds. LetM be a square τfmat-matrix over a �nite �eld F, where F is a τ�eld-
structure with q = pd elements, where p is prime and d > 1. Consider a primitive element
α ∈ U(F). By Lemma 3.7, there is a formula of IFPC that de�nes over (F, α) the minimal
polynomial f (X) of α over GFp[X]. As discussed in §3.2.2, this polynomial is monic and
irreducible of degree d over GFp[X]. To describe the characteristic polynomial ofM over F,
we follow these steps. First, we de�ne a polynomial g(X) over Z whose reduction modulo p
is f (X). �is can be done trivially, for the coe�cients of f (X) are already given by integers
in the range [0, p − 1], according to Lemma 3.7. Next we li� the matrix M to a matrix M+

over the commutative ringR = Z[X]/(g(X)), according to the IFPC-de�nable isomorphism
given by Corollary 3.8. Finally, we apply Le Verrier’s method over R to the matrixM+ and
then reduce the output modulo p to get the correct result. �is last reduction is sound as we
have F = R/(pZ).
Addition and multiplication of elements in R is carried out coe�cient-by-coe�cient,

and can be expressed by formulae of IFPC. �is follows from the Immerman-Vardi theorem
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since the polynomial coe�cients are linearly ordered. �e same argument shows that we can

de�ne reduction of polynomials modulo f (X) with a �xed-point formula. Multiplication of
matrices over R can be de�ned in IFPC, by an argument similar to the one given in the proof
of �eorem 3.10. It should now be clear the we can describe the characteristic polynomial

over R. Reducing the result modulo p in the end is straightforward, as before.
Finally, note that we are here using a linear ordering which depends on the choice of

primitive element α. However, as the outcome of each step that we describe above does not
rely on the actual ordering of the �eld elements, it can be seen that the overall query is order-

invariant. �erefore, the result stated below is obtained by quantifying over all primitive
elements of F, which are de�nable in FOC+DTC by Corollary 3.4.

Putting all the above together we get the following theorem, which says that the characteristic

polynomial, and hence the determinant, can be de�ned in IFPC over any �nite-�eld matrix.

�eorem3.14 (Characteristic polynomial over �nite �elds). �ere are IFPC-formulae θdet(z)
and θchar(z, υ) in vocabulary τ⋆fmat, where z is an element variable and υ is a number variable,
which for any square τfmat-matricesM over a �nite �eld F satisfy:

• M⋆ ⊧ θdet[d] i� the determinant ofM over F is d ∈ U(F);

• M⋆ ⊧ θchar[d , k] i� the coe�cient of xk in the characteristic polynomial χM(x) of M
over F is d ∈ U(F).

3.5 Rank and minimal polynomial over the rationals

We conclude this chapter by studying properties of matrices over the �eld of rationals. Our

main result is that both the rank and the minimal polynomial of rational matrices can be

de�ned in IFPC. �ese results both rely on properties of certain inner products overQ (and
more generally over C and R) which do not hold over �elds of positive characteristic, as we
will explain in further detail below.

3.5.1 Rank overQ

Let A be a matrix over Q, not necessarily square, and write A∗ ∶= AtA. �e matrix A∗ is
square and symmetric, for (A∗)t = (AtA)t = AtA = A∗. For the following lemma, we use the
fact that for any n ≥ 1, the dot product ⟨⋅, ⋅⟩ ∶ Qn × Qn → Q de�ned by ⟨x , y⟩ ∶= xty is an
inner product on the vector spaceQn. In particular, ⟨x , x⟩ = 0 if and only if x = 0.

Lemma 3.15. For any matrix A overQ it holds that rankA = rankA∗ = rank (A∗A∗).

Proof. Let A be an m × n matrix over Q. Recall that the kernel of A is the subspace of Qn

which consists of all vectors that are annihilated by A; that is,

ker(A) ∶= {x ∈ Qn ∣ Ax = 0}.

Furthermore, we know that rank(A) = n − dimker(A), by the rank-nullity theorem (see
§2.8 for further details). We claim that kerA = ker(AtA), which then implies that rank(A) =
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rank(A∗). To prove this claim, �rst observe that ker(A) ⊆ ker(AtA), for if Ax = 0 then
AtAx = At(Ax) = 0 too. For the other inclusion, consider x ∈ Qn. �en

x ∈ ker(AtA) ⇔ AtAx = 0
⇒ xtAtAx = 0
⇒ (Ax)t(Ax) = 0
⇒ (Ax) = 0,

which shows that ker(AtA) ⊆ ker(A). Similarly, it can be shown that kerA∗ = ker (A∗A∗),
using the fact that A∗ is symmetric. �e lemma now follows.

With this in mind, the following lemma (see e.g. Kozen [50, Lemma 32.1]) tells us that the

rank of a rational matrix A can be inferred directly from its characteristic polynomial.

Lemma 3.16. Let A be an n×n matrix over any �eld. If rankA = rankA2, then rankA = n−k
where xk is the highest power of x that divides the characteristic polynomial χA(x).

Now consider an m × n matrix A over Q. �e above results show that the rank of A can be
computed in the following steps:

(1) compute the matrix A∗ = AtA;

(2) calculate the characteristic polynomial pA∗(x) of A∗; and

(3) �nd xd , the highest power of the x that divides pA∗(x). �en the rank of A is n − d,
where A∗ has dimension n × n.

As all the computation steps outlined above can be described in IFPC, we get the following

result.

Corollary 3.17 (Rank over the rationals). �ere is a numeric IFPC-term θrank of vocabulary
τ⋆Q which for all �nite τQ-structures A satis�es: θA⋆

rank = r i� the rank of A overQ is r.

Finally, remark that the statement of Lemma 3.16 holdsmore generally formatrices overR or
C if we take A⋆ ∶= AtA, where At is the transpose of Awith every entry replaced its complex
conjugate. However, the statement does not hold over �nite �elds. For instance, over GFp,
the p× p all-ones matrix Jp has rank one, but Jtp Jp = 0 has rank zero. Essentially, the problem
here is that the vector space map (x , y) ↦ xty is not an inner product when the underlying
�eld has positive characteristic (the condition “xtx = 0 i� x = 0” is violated).

3.5.2 Minimal polynomial overQ

�e minimal polynomial of a square matrix A is the monic polynomial mA(x) of smallest
degree m such that

mA(A) = Am + am−1Am−1 +⋯ + a1A+ a0I = 0.

�e minimal polynomial divides any polynomial q(x) with q(A) = 0. In particular, it di-
vides the characteristic polynomial χA(x) (see e.g. Horn and Johnson [42]). Hoang and
�ierauf [41] give a polynomial-time algorithm for computing the coe�cients of the mini-

mal polynomial, which crucially does not require a computation of the eigenvalues of A. In
this section we brie�y review this algorithm, and show that it can be expressed in IFPC.
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Let A be an J × J matrix overQ, where J is a �nite set of cardinality n > 0. �en by de�nition
of the minimal polynomial it follows that A has a minimal polynomial of degree m if and
only if

(1) there is a monic polynomial p(x) of degree m for which it holds that p(A) = 0; and

(2) for every monic polynomial q(x) of degree k < m, q(A) ≠ 0.

For an r× smatrix B, we write vec(B) to denote the column vector of length r ⋅ s obtained by
stacking the columns of B one below the other. For i = 1, . . . , n, let vi = vec(Ai). �en it can
be seen that condition (1) from above is equivalent to saying that there exist x0, . . . , xm−1 ∈ Q
such that

vm + xm−1vm−1 + ⋅ ⋅ ⋅ + x0v0 = 0, (†)

which states that the vectors {v0, . . . , vm} should be linearly dependent over Q. Similarly,
condition (2) that all monic polynomials q(x) of degree k < m should have q(A) ≠ 0, is
equivalent to saying that for all k < m and all x0, . . . , xk−1 ∈ Q it holds that

vk + xk−1vk−1 + ⋅ ⋅ ⋅ + x0v0 ≠ 0, (‡)

which states that the vectors {v0, . . . , vk} should be linearly independent over Q. Hence,
we see that the set of coe�cients a = (a0, . . . , am−1) of the minimal polynomial mA(x) is a
solution to equation (†), in unknowns x0, . . . , xm−1, for the leastm for which it has a solution.
Indeed, for this value of m such a solution will be unique. �is gives us an algorithm to
compute mA(x):

(a) Determine the least m ≤ n such that the vectors {v0, . . . , vm} are linearly dependent
and the vectors {v0, . . . , vm−1} are linearly independent. �is m will be the degree of
mA(x).

(b) Solve the linear system vm + xm−1vm−1 + ⋅ ⋅ ⋅ + x0v0 = 0, in unknowns x0, . . . , xm−1.

�e linear system in step (b) above can be written as Bmx = −vm, where x = (xm−1, . . . , x0)t
and Bm = (v0 ∣ . . . ∣ vm−1) is a matrix indexed by J2 × [m], for m ∈ [n]. Since the columns
{v0, . . . , vm−1} are independent by assumption, it follows that the matrix Bm has full column
rank. Hence, the system will have a unique solution, as expected.

�e algorithm we have described here can be expressed in IFPC as follows. Firstly, note that

rank(MtM) = rank(M) for any rational matrix M, as stated by Lemma 3.15. Hence, the
vectors {v0, . . . , vm−1} are independent if and only if rank(BtmBm) = m. In other words,
{v0, . . . , vm−1} are independent if and only if the square matrix Mm has full rank, where
Mm ∶= BtmBm. �us,

{v0, . . . , vm−1} are independent ⇔ det(Mm) ≠ 0.

�is test can be expressed in IFPC, for each m = 1, . . . , n, using Corollary 3.13. To �nd the
degree of the minimal polynomial in (a), we simply have to iterate this until we �ndm where
det(Mm) ≠ 0 and det(Mm+1) = 0. Having found this value ofm, in step (b) we want to solve
the system

Bmx = −vm . (§)
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De�ne a new system Cx = b, where C = BtmBm is an [m] × [m]matrix and b = −Btmvm. In
particular, note that the rows and columns of C are linearly ordered over the integers. Since
C = Mm is non-singular, we solve the system (§) by taking

x = C−1b.

�is step can also be expressed in IFPC; the matrix C can be de�ned in IFPC as we described
in §3.3 and since the rows and columns of C are linearly ordered, its inverse C−1 can be de-
�ned in IFPC (even IFP) by the Immerman-Vardi theorem. We conclude with the following

theorem.

�eorem 3.18 (Minimal polynomial overQ). �ere are formulae θn
min(µ, υ) and θd

min(µ, υ)
in IFPC[τ⋆Q], where µ and υ are number variables, which for all square τQ-matrices A satisfy:

• A⋆ ⊧ θn
min[k, i] i� the i-th bit of the numerator of the coe�cient of xk in the minimal

polynomial mA(x) of A overQ is 1; and

• A⋆ ⊧ θd
min[k, i] i� the i-th bit of the denominator of the coe�cient of xk in the minimal

polynomial mA(x) of A overQ is 1.



Chapter 4

Logics with matrix rank operators

It has been observed in recent years thatmany of the problems separating IFP and IFPC from

PTIME relate to the inability of these logics to express certain basic properties from linear

algebra. For instance, it has been shown that over �nite �elds, IFP is unable to determine

whether or not a squarematrix is singular [9] and IFPC is unable to de�nematrix rank [4, 16].

Both of these matrix properties are computable in polynomial time by Gaussian elimination,

for instance.

In order to address these shortcomings of the two logics, it is natural to consider exten-

sions of �xed-point logic with operators for de�ning basic linear-algebraic properties. Here

our focus is on well-de�ned properties of unordered matrices, whose rows and columns are
indexed by arbitrary sets. �is is because on ordered matrices, every polynomial-time com-

putable property can already be de�ned in IFP, by the Immerman-Vardi theorem. In par-

ticular, there is a �xed-point formula that, by performing Gaussian elimination, de�nes the

row-reduced echelon form of any ordered matrix, from which both the rank and singular-

ity can be deduced. By ‘well-de�ned’ we mean matrix properties that are invariant under

simultaneous permutation of the rows and columns. It can be readily seen that singularity,
determinant and rank are all well-de�ned matrix properties in this sense.

In [9], Blass et al. showed that the class of square singular matrices can be de�ned in IFPC

over �nite �elds, over the ring of integers and over the �eld of rational numbers. In the

previous chapter, we showed that over each of the three aforementioned domains, IFPC can

express the characteristic polynomial—and hence the determinant—of any square matrix.

Furthermore, we showed that the rank of rational-valued matrices can already be de�ned in

IFPC. Together, these results focus attention speci�cally on matrix rank over �nite �elds as
an algebraic property that separates IFPC from PTIME.

To address this shortcoming of IFPC, we introduce in this chapter an extension of �xed-

point logic with terms to express the rank of de�nable matrix relations over a �nite �eld.

In this setting, we identify a binary relation R ⊆ A × A over a set A with a (0, 1)-matrix
M = (mi j) by lettingmi j = 1 if (i , j) ∈ R andmi j = 0 otherwise. A rank term is an expression
of the form rkp(x⃗ , y⃗).φ, where the rank operator rkp binds the tuples of variables x⃗ and y⃗
in the formula φ and denotes over a �nite structure A the number that is the rank of the
binary relation φ(x⃗ , y⃗)A interpreted as a (0, 1)-matrix over the �nite �eld GFp, where p is a
prime number. More generally, we consider rank operators that bind number terms instead

of formulae, so that we can describe the rank of de�nable matrices that contain entries other

50
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than just zero and one. �e logic IFPR is de�ned by extending �xed-point logic with rules

for forming rank terms of this kind. We show that this logic can both simulate counting and

de�ne solvability of systems of linear equations over any �nite �eld. It follows that IFPR is

strictlymore expressive than IFPC. Moreover, sincematrix rank can be computed in polyno-

mial time, it follows that IFPR has polynomial-time data complexity, which is to say that all

properties of �nite structures de�nable in IFPR are decidable in polynomial time. Together,

this implies that IFPC ≨ IFPR ≦ PTIME.
Apart from extensions of �xed-point logic with rank operators over �nite �elds, we also

consider extensions of �rst-order logic with �nite-�eld rank operators and logics with rank

operators over the �eld of rational numbers. �is will be the topic of §4.1, where we de�ne

each of these rank logics and study some of their basic properties. In particular, we show that

each type of rank operator can simulate counting. In §4.2 we study the problem of deciding

solvability of systems of linear equations. We show that for each prime p, the class of solvable
linear systems over GFp can be de�ned in FORp, the extension of �rst-order logic with rank
operators of the form rkp. Furthermore, we show that IFPRp, the extension of �xed-point
logic with rank operators of the form rkp, can de�ne solvability of linear systems over GFpd
for any exponent d ∈ N. We then study arity hierarchies of the rank logics FOR and IFPR in
§4.3. Here, we de�ne the arity of a rank term rkp(x⃗ , y⃗).φ to be the total number of distinct
variables in x⃗ ∪ y⃗. Writing FORp;m and IFPRp;m to denote the sublogic of FORp and IFPRp,
respectively, obtained by allowing only rank terms of arity at most m, we show that the arity
hierarchies FORp;2 ≦ FORp;3 ≦ . . . and IFPRp;2 ≦ IFPRp;3 ≦ . . . are strict for each prime p.
�is contrasts with the counting logic IFPC, for which it can be shown that unary counting

operators su�ce to de�ne counting in any arity. Finally, we conclude by giving a summary in

§4.4 of all the rank logics de�ned in this chapter, illustrating their relations with other rank

logics as well as some of the other logics we have studed previously.

4.1 Rank logics

In this section we introduce extensions of �rst-order and �xed-point logic with operators

that express the rank of a de�nable matrix. Here we focus on three kinds of rank logics.

Firstly, in §4.1.2 we consider numerical extensions of �rst-order and �xed-point logic with

rank operators for matrices over �nite �elds. In §4.1.3 we de�ne similar numerical logics

with operators for de�ning the rank of rational-valued matrices. Finally, in §4.1.4 we de�ne

(non-numerical) extensions of �nite-variable in�nitary logic with rank quanti�ers over �nite
�elds. �ese in�nitary rank logics subsume both �rst-order and �xed-point logic with rank

operators over �nite �elds, as we will see.

�e rank operators and rank quanti�ers we de�ne apply tomatrices described by number

terms or formulae. �is kind of notation was de�ned in Chapter 3 formatrices overZ andQ.
We begin our discussion by establishing in §4.1.1 the corresponding notation for describing

matrices over �nite �elds.

4.1.1 Specifying matrices over GFp by number terms or formulae

Here we de�ne notation for specifying matrices over �nite �elds in a two-sorted (numerical)

logic. More speci�cally, for prime p we introduce two alternative ways to describe matrices
over GFp: one by giving a single number term, which is reduced modulo p at every position,
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and another by giving a (p − 1)-tuple of formulae, specifying which matrix entries are non-
zero �eld elements.

De�nition 4.1 (Matrices over GFp described by number terms). Let x⃗ and y⃗ be tuples of
element variables and consider a number term η in vocabulary τ where free(η) ⊆ x⃗ ∪ y⃗.

• Given a �nite τ-structureA, wewritematx⃗ , y⃗(η,A) ∶= η(x⃗ , y⃗)A⋆ to denote theU(A)∥x⃗∥×
U(A)∥ y⃗∥ integer matrix de�ned by η(x⃗ , y⃗) overA⋆. �at is, if we write matx⃗ , y⃗(η,A) =
(ma⃗b⃗) then

ma⃗b⃗ = η[a⃗, b⃗]A,

for all a⃗ ∈ U(A)∥x⃗∥ and b⃗ ∈ U(A)∥ y⃗∥.

• Let p be prime. Given a �nite τ-structure A, we write

fmatx⃗ , y⃗(η,A)p ∶= matx⃗ , y⃗(η,A) (mod p)

to denote the matrix over GFp obtained from matx⃗ , y⃗(η,A) by reducing each matrix
entry modulo p.

∎

Overloading our notation, we also consider matrices de�ned in this way by formulae, rather

than number terms.

De�nition 4.2 (Matrices over GFp described by formulae). Consider a prime p and let x⃗
and y⃗ be tuples of element variables.

• Consider a formula φ in vocabulary τ where free(φ) ⊆ x⃗∪ y⃗. Given a �nite τ-structure
A, we write fmatx⃗ , y⃗(φ,A)p to denote the U(A)∥x⃗∥ × U(A)∥ y⃗∥ (0, 1)-matrix over GFp

de�ned for all a⃗ ∈ U(A)∥x⃗∥ and b⃗ ∈ U(A)∥ y⃗∥ by

(a⃗, b⃗) ↦ 1⇔ A ⊧ φ[a⃗, b⃗].

• Let Φ = (φ1, . . . , φp−1) be a tuple of formulae in vocabulary τ, with free(φi) ⊆ x⃗∪ y⃗ for
all i. Given a �nite τ-structure A, we write fmatx⃗ , y⃗(Φ,A)p for the U(A)∥x⃗∥ ×U(A)∥ y⃗∥
matrix over GFp de�ned by

fmatx⃗ , y⃗(Φ,A)p ∶=
p−1
∑
i=1

i ⋅ fmatx⃗ , y⃗(φi ,A)p (mod p).

∎

Example 4.3. For any prime �eld GFp, the formula ¬(x = y) de�nes a square matrix in
which the entries outside the main diagonal are one and all the diagonal entries are zero.

Similarly, for any formula φ(x), (x = y∧φ(x)) interpreted in a structureA de�nes a square
diagonalmatrix, with 1 in position (a, a) ∈ A×Aon the diagonal if, and only if, (A, a) ⊧ φ. ∎
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4.1.2 Logics with rank operators over prime �elds

First-order logic with variable rank (FORvar) is a numerical logic with operators for de�ning
the rank of matrices over prime �elds. �e terms and formulae of this logic are de�ned

inductively in exactly the same way as the terms and formulae of FOC (see §2.5), except that

we replace the rule for forming counting terms of the kind #xφ with the following rule for
constructing rank terms over prime �elds:

For all FORvar number terms t and all tuples of element variables x⃗ and y⃗, if η
is a number term or a formula of FORvar then rk(x⃗ , y⃗).(η, t) is a number term
of FORvar. We let free(rk(x⃗ , y⃗).(η, t)) ∶= (free(η) ∖ (x⃗ ∪ y⃗)) ∪ free(t).

�e semantics of rank terms of FORvar over vocabulary τ are de�ned for all pairs (A⋆, α),
where A is a �nite τ-structure, as follows:

α(rk(x⃗ , y⃗).(η, t)) ∶=
⎧⎪⎪⎨⎪⎪⎩

rank(fmatx⃗ , y⃗(η,A)p) if α(t) = p is a prime number ,
0 otherwise.

For prime p, we also consider the logic FORp which is de�ned like FORvar except that we
replace the above rule for forming rank terms with a rule for constructing terms of the fol-

lowing kind:

If η is a number term or a formula of FORp and x⃗, y⃗ tuples of element vari-
ables, then rkp(x⃗ , y⃗).η is a number term of FORp. We let free(rkp(x⃗ , y⃗).η) ∶=
(free(η) ∖ (x⃗ ∪ y⃗)).

�e semantics of rank terms of FORp are de�ned like for FORvar, where now all matrices
are de�ned over GFp. Finally, we write FOR to denote the numerical extension of �rst-order
logic with all the rank operators rkp, for prime p.
We also consider extensions of �xed-point logic with rank operators. For prime p, the

rank logic IFPRp is obtained by extending IFP in the numerical setting with the rank oper-
ator rkp, just like we obtained IFPC by extending IFP with counting operators before. We
write IFPR for the numerical extension of IFP with all the rank operators rkp, for prime p.
Similarly, we write IFPRvar for the numerical extension of IFP with rank operators over �elds

of variable characteristic.

It can be seen that for each prime p and each formula φ ∈ FORp, there is a formula φ′ ∈
FORvar which is logically equivalent to φ over �nite structures. For instance, φ′ can be ob-
tained from φ by replacing every occurence of a rank term rkp(x⃗ , y⃗).η in φ with the term
rk(x⃗ , y⃗).(η, tp), where tp ≡ 1N + ⋯ + 1N is the number term de�ned by adding together p
copies of the constant 1N . Similar obversations can be made about the other rank logics we
have considered, as stated by the following lemma.

Lemma 4.4. For prime p, FORp ≦ FOR ≦ FORvar and IFPRp ≦ IFPR ≦ IFPRvar.

For a formula φ ∈ FORvar of vocabulary τ, let

T(φ) ∶= {t ∣ a rank term rk(x⃗ , y⃗).(η, t) occurs in φ}

be the set of all number terms that de�ne the prime characteristic of some rank term in φ.
Given a �nite τ-structure A, let Π(φ,A) ∶= {tA⋆ ∣ t ∈ T(φ)} denote the interpretation of
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all the number terms in T(φ) over A and set Π(φ) ∶= ⋃A∈�n[τ]Π(φ,A). Now it can be
seen that the key di�erence between the logics FORvar and FOR (and likewise for the logics

IFPRvar and IFPR) is that for each formula φ ∈ FOR there is a logically equivalent formula
φ′ ∈ FORvar for which the the set Π(φ′) is �nite. �is is generally not true for formulae in
FORvar, where each rank operator is applied to a �eld of prime characteristic p which may
depend on the size of the underlying structure. However, the following lemma shows that

the range of primes available to formulae in FORvar and IFPRvar is not arbitrary.

Lemma 4.5. Consider a vocabulary τ. For any number term t in IFPRvar[τ]with free(t) = ∅,
there is a polynomial q ∶ N0 → N0 so that tA

⋆ ≤ q(∥A∥) for any �nite τ-structure A.

Proof. We prove this by induction over terms. Clearly, the statement holds for the number
constants 0 and 1. Suppose now that s and t are number terms whose value is bounded above
by polynomials qs and qt , respectively. �en the terms s ⋅ t and s + t are bounded by polyno-
mials qsqt and qs+qt , respectively. Finally, consider a number term s ≡ rk(x⃗ , y⃗).(η, t). Since
the rank of any matrix is bounded above by both its row and column dimension, it follows

that the value of s is bounded above by the polynomial nk where k = min{∥x⃗∥, ∥ y⃗∥}.

Corollary 4.6. Consider a vocabulary τ. For any formula φ ∈ IFPRvar[τ] there is a polynomial
q ∶ N0 → N0 so that m ≤ q(∥A∥) for all A ∈ �n[τ] and m ∈ Π(φ,A).

We have seen that rank logics are numerical logics de�ned in exactly the same way as count-

ing logics, except that rules for forming counting terms are replaced with rules for forming

rank terms. Alternatively, instead of replacing rules in this way we could have de�ned rank
logics by adding the rules for constructing rank terms to the set of rules for the corresponding
counting logic. �is, however, would have made no di�erence in terms of expressive power,

as the following theorem shows.

�eorem 4.7. For prime p, FOC ≦ FORp and IFPC ≦ IFPRp.

Proof. Consider a formula ψ(x) in vocabulary τ. De�ne the formula φ(x , y) ≡ (x = y) ∧
ψ(x). As in Example 4.3, it can be seen that for any prime p and �nite τ-structure A,
fmatx ,y(φ,A)p is a square diagonal (0, 1)-matrix, with one in position (a, a) ∈ U(A)×U(A)
on themain diagonal if and only ifA ⊧ φ[a, a]. Moreover, by the de�nition of φ, it holds that
A ⊧ φ[a, a] if and only if A ⊧ ψ[a], for all a ∈ U(A). �e rank of the matrix fmatx ,y(φ,A)p
is just the number of non-zero entries along the main diagonal, which is the same as the

number of satisfying assignments to ψ fromA, by the above. Hence, for any prime p it holds
that

(rkp(x⃗ , y⃗).φ)A⋆ = (#xψ)A⋆ ,

for all �nite τ-structures A. Hence, counting terms can be simulated by rank terms. �e
theorem now follows by a simple induction on formulae.

Finally, we note that all the rank logics IFPRvar, FORvar, IFPR, FOR, IFPRp and FORp (for
prime p) are closed under Boolean operations as well as applications of rank operators (and
thereby �rst-order quanti�cation). It follows readily that all these logics are closed under

�rst-order reductions.
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4.1.3 Logics with rank operators overQ

For completeness, we also de�ne a logic with operators for expressing the rank of rational-

valued matrices. �e terms and formulae of �rst-order logic with rank over Q (FORQ) are
de�ned inductively in exactly the same way as the terms and formulae of FOC, except that

we replace the rule for forming counting terms of the kind #xφ with the following rule for
constructing rank terms over the rationals:

Let x⃗ and y⃗ be tuples of element variables and let υ be a number variable. If φn,
φd and ψ are formulae of FORQ then rkQ(x⃗ , y⃗).(φn , φd ,ψ, t) is a number term
of FORQ. We let

free(rkQ(x⃗ , y⃗).(φn , φd ,ψ, t)) ∶=
((free(φn) ∪ free(φd) ∪ free(ψ)) ∖ (x⃗ ∪ y⃗)) ∪ free(t).

�e semantics of rank terms of FORQ over vocabulary τ are de�ned for all pairs (A⋆, α),
where A is a τ-structure, as follows:

α(rkQ(x⃗ , y⃗).(φn , φd ,ψ, t)) ∶=
⎧⎪⎪⎨⎪⎪⎩

rank(M) ifM = matx⃗ , y⃗,υ(φn , φd ,ψ, t,A) is de�ned ,
0 otherwise,

where matx⃗ , y⃗,υ(φn , φd ,ψ, t,A) denotes the matrix with entries fromQ we de�ned in §3.3.1.
Recall from Corollary 3.17 that the rank of rational matrices can be expressed in IFPC. Also,

we can see that the simulation of counting terms by rank terms de�ned above for rank opera-

tors rkp (�eorem 4.7) is valid for rank operators overQ as well. �erefore, the logic IFPRQ,
obtained by extending IFP in the numerical setting with rules for constructing rank terms

overQ, coincides exactly with IFPC over �nite structures. We summarise these observations
as follows.

Corollary 4.8. Over �nite structures, FORQ ≦ IFPRQ = IFPC.

4.1.4 In�nitary logic with rank quanti�ers

In this section we consider extensions of �nite-variable in�nitary logic with quanti�ers for

expressing matrix rank. �ese rank quanti�ers, which can be seen as special types of the
Lindström quanti�ers which we discussed in §2.2.7, are de�ned as follows.

For each integer i ≥ 0 and prime p, de�ne anm-ary rank quanti�er rk≥ip which binds exactly
m variables and (p − 1)-formulae. For each prime p and integers k,m ≥ 1, with m ≤ k,
we write Rk

p;m to denote k-variable in�nitary rank logic of arity m over GFp. �is logic is

obtained by extending the formula-formation rules for k-variable in�nitary logic Lk with
the following rule:

If φ1, . . . , φp−1 are formulae, x⃗ and y⃗ are non-empty tuples of distinct variables
with ∥x⃗ ∪ y⃗∥ = m and i ≥ 0, then rk≥ip (x⃗ , y⃗).(φ1, . . . , φp−1) is a formula. We let
free(rk≥ip (x⃗ , y⃗).(φ1, . . . , φp−1)) ∶= (⋃i free(φi) ∖ (x⃗ ∪ y⃗)).
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�e semantics of rank quanti�ers ofRk
p;m over vocabulary τ are de�ned for all pairs (A⋆, α),

where A is a �nite τ-structure, as follows:

A ⊧ rk≥ip (x⃗ , y⃗).(φ1, . . . , φp−1) if and only if rank fmatx⃗ , y⃗((φ1, . . . , φp−1),A)p ≥ i .

Additionally, we can de�ne rank quanti�ers rk
=i
p , rk

≤i
p , rk

<i
p and rk

>i
p , by a simple combination

of rk
≥i
p -quanti�ers.

We write Rω to denote �nite-variable in�nitary logic with rank operators of any arity and
over any prime �eld. For m ≥ 2, we write Rω

∗;m to denote the fragment of Rω in which
each formula uses only rank operators arity at most m, and for prime p, we write Rω

p;m to
denote the fragment ofRω

∗;m in which each formula uses only rank operators over GFp. We
also de�ne similar restrictions of �rst-order and �xed-point rank logics. �at is, for each

m ≥ 2 we write IFPR∗;m for the class of all those IFPRvar-formulae in which all occurrences
of rank operators are of arity at most m. Also, for m ≥ 2 and prime p, we write IFPRp;m for
the restriction of IFPR∗;m where each formula has only rank operators of the form rkp. �e
corresponding restrictions of FORvar (FOR∗;m and FORp;m) are de�ned in exactly the same
way.

Ourmain interest in studying the in�nitary logicsRk
p;m is to analyse the expressive power

of �rst-order and �xed-point logics with operators for matrix rank. We will see examples

of this later in §4.3, where we show that rank logics form a strict arity hierarchy, and in

Chapter 6, where we develop a game-theoretic proof method for proving non-de�nability

results for rank logics. Recall that by �eorem 2.13, we have IFP ≨ Lω and IFPC ≨ Cω. In
other words, both �xed-point logic and �xed-point logic with counting are subsumed by the

corresponding in�nitary logic. Below we establish a similar correspondence between �xed-

point rank logics and in�nitary rank logics.

First though, we need an intermediate lemma, to translate from rank terms binding a

single number term to rank terms binding a tuple of formulae. �at is, we write IFPR⋆p;m for
the logic de�ned in exactly the same way as IFPRp;m, except that the rule for forming rank
terms is replaced with the following rule, where p is prime:

If φ1, . . . , φp−1 are formulae of IFPR
⋆
p;m, x⃗ and y⃗ are non-empty tuples of distinct

element variables with ∥x⃗ ∪ y⃗∥ = m, and Φ = (φ1, . . . , φp−1), then rkp(x⃗ , y⃗).Φ
is a number term of IFPR⋆p;m.

Here the semantics are de�ned exactly like before, this time by considering thematrix de�ned

by the tuple of formulae Φ.

Lemma 4.9. For each integer m ≥ 2 and prime p, IFPRp;m ≡ IFPR⋆p;m over �nite structures.

Proof. Let m ≥ 2 and p be prime. To show that IFPRp;m ≦ IFPR⋆p;m, consider a rank term of
IFPRp;m of the form rkp(x⃗ , y⃗).η, where η is a number term. For each i ∈ [p − 1], de�ne a
formula φi by

φi(x⃗ , y⃗) ≡ ∃µ ≤ η(x⃗ , y⃗) (η(x⃗ , y⃗) = i + µ ⋅ p).

In otherwords, φi(x⃗ , y⃗)de�nes the predicate “η(x⃗ , y⃗) ≡ i (mod p)”. LetΦ = (φ1, . . . , φp−1).
It is now clear that for any �nite structure A,

(rkp(x⃗ , y⃗).η)A
⋆ = (rkp(x⃗ , y⃗).Φ)A⋆ ,
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as required. �e remainder of the induction is straightforward. �eother direction, IFPR⋆p;m ≦
IFPRp;m, can be proved similarly.

�eorem 4.10. For each integer m ≥ 2 and prime p, IFPRp;m ≨ Rω
p;m.

Sketch proof. To prove this theorem, we need to show that every formula of IFPRp;m with-
out free number variables can be translated into a formula of Rω

p;m. Following the proof of
Lemma 3.2 in [29], we show that all occurrences of number variables and generation of �xed-

points can be expanded uniformly with respect to the cardinality of the underlying structure.

�at is, the formulae we construct inRω
p;m will be of the form

⋁
n<ω

∃=nx (x = x) ∧ φn ,

where φn captures the meaning of the formula over structures of size n. Note here that the
logicRω

p;m does not have actual counting quanti�ers (and therefore wewrite these above only
as shorthand) but we can simulate counting quanti�ers with rank quanti�ers, in a similar way

as w simulated counting terms with rank terms before.

�e expansion of �rst-order and �xed-point operators can be considered by standard

means; for instance, see the proof of Corollary 1.30 in Otto [58]. Number variables and

number terms can be dealt with in a similar way as in the proof of IFPC ≨ Cω by Grädel and
Otto [29, Lemma 3.2], by replacing the translation of counting terms into counting quanti-

�ers with a translation of rank terms into rank quanti�ers. For completeness, we retrace the

main argument here.

Consider a formula φ(x , υ) of IFPR⋆p;m ≡ IFPRp;m (Lemma 4.9), where x is an element vari-
able and υ is a number variable. We translate φ(x , υ) with respect to υ to a sequence of
formulae (φk(x))k<ω, where for each k < ω the relation de�ned by the formula φk(x) (with
respect to x) agrees with the relation de�ned by the formula φ(x , υ) when υ is assigned in-
teger value k. �e induction argument is similar to the proof of Lemma 3.2 in [29], with the
exception of formulae containing rank terms, which we explain here.

To give an example of the induction step with formulae involving rank operators, we

consider an IFPR⋆p;m-formula φ(x , υ) ≡ υ ≤ rkp( y⃗, z⃗).(ψ1, . . . ,ψp−1), with ∥ y⃗ ∪ z⃗∥ = m, the
maximum arity, and each ψi(x , y⃗, z⃗) a formula. By the induction hypothesis, suppose that
ψi ,n(x , y⃗, z⃗) captures the meaning of ψi(x , y⃗, z⃗) on structures of size n. �en the uniform
family for φ is de�ned with respect to n and k by

φn,k(x) ≡ rk≥kp ( y⃗, z⃗).(ψ1,n , . . . ,ψp−1,n),

where k ≤ nm. Here n is the parameter for the size of the structure and k is the parameter
for the number variable υ. �e rest of the induction proceeds as in the proof of Grädel and
Otto.

Finally, since queries de�nable in IFPRp;m are in PTIME, whileRω
p;m can express even non-

recursive queries (see §2.6), it follows that the inclusion of IFPRp;m inRω
p;m is proper.

Corollary 4.11. IFPRvar ≨ Rω and IFPR∗;m ≨ Rω
∗;m for each integer m ≥ 2.
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4.2 Systems of linear equations

Let G be group, written additively with identity 0G . An equation over G is an expression of
the form

v1 + v2 + ⋅ ⋅ ⋅ + vm = 0G
where each vi is either a variable, an inverted variable or a constant group element. �e
expression can be satis�ed if there is an assignment of values from G to the variables so that
the equality holds. A system of equations over G is a collection of such equations. A system
of equations is said to be solvable is there is an assignment of values which simultaneously
satis�es each equation.

More o�en, we consider equations where the variables are allowed to take values in a

�eld instead of a group. Let F be a �eld and write + and ⋅ for addition and multiplication in
F, respectively. A linear equation over F is an expression of the form

a1 ⋅ x1 + a2 ⋅ x2 + ⋅ ⋅ ⋅ + am ⋅ xm = b,

where b is a constant element from F, each xi is a variable and each scalar coe�cient ai is a
constant element from F. A system of linear equations over F (or linear system, for short) is
a collection of such expressions; the system is said to be solvable if there is an assignment of

the variables to elements in F that simultaneously satis�es each equation.
�e complexity of determining the solvability of a system of equations varies according

to the domain that the variables are assigned values from. It is known that the problem of

deciding solvability of a system of equations over a �xed �nite group is in PTIME if the group

is Abelian and NP-complete otherwise [28]. When we consider linear equations over a �eld

we can write the system as a matrix equation Ax = b and apply methods from linear algebra
to its study. Such a system is solvable if and only if b is contained in the span of the column
vectors of A; or in other words if and only if the two matrices A and (A∣b) have the same
rank. �is shows that the solvability of a system of linear equations over a �eld can be decided
in PTIME since matrix rank can be computed in polynomial time by Gaussian elimination,

say.

Atserias, Bulatov and Dawar [4] considered the problem of de�ning solvable systems of

equations over a �nite Abelian group. �ey showed that for any �xed �nite Abelian group

G with at least two elements, the class of solvable systems is not de�nable in �nite-variable
in�nitary logic with counting. When the group G arises as the additive group of a �nite �eld
F, the problem of deciding solvability of a linear system overG can be trivially reduced to the
problem of deciding solvability over F. �at is, a linear system overG = (F ,+) can simply be
seen as a linear system over F where all scalar coe�cients appearing in the linear equations
are either 1F or −1F. �is immediately shows that the class of solvable linear systems over a
�xed �nite �eld is not de�nable in �nite-variable in�nitary logic with counting and hence

also not in IFPC.

In this section we consider the problem of de�ning solvable systems of linear equations over

a �nite �eld. From the basic characterisation of solvability in terms of matrix rank, it follows

easily that the rank logic FORp can express solvability of linear systems over GFp, for each
prime p. With a little more work, we can also show that for each prime p and d ∈ N, IFPRp
can decide solvability of linear systems over GFpd . Before making these statements more
speci�c, we de�ne our chosen representation of linear systems as �nite relational structures.
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A system of linear equations over a �nite �eld can be represented as a three-sorted �nite

structure in vocabulary τsys ∶= {A, B} ∪ τ�eld, where A is a ternary relation symbol of type
(1, 2, 3) and B is a binary relation symbol of type (1, 3). Here τ�eld = {+f,×f, 0f, 1f} denotes
the signature of �elds de�ned in §3.1.1, with all relation and constant symbols restricted to

the third sort. A τsys-structure S with sorts I, J and F, in that order, describes the system of
linear equations

ASx = BS
over F,

where the �eld F = (F ,+F
f
,×F
f
, 0F
f
, 1F
f
) is obtained from the reduct S∣τ�eld by retaining only

the elements of the third sort F, AS is an I × J matrix over F, BS is a column vector indexed

by I over F and x = (x j) j∈J is a row vector of distinct variables, indexed by J. �e system S is
solvable over F if there is a column vector c indexed by J over F such that

ASc = BS
.

Here, the multiplication of matrices is with respect to the �eld operations of F. For m = pd ,
where p is prime and d ∈ N0, write Solvablem for the class of solvable τsys-structures over
a �eld of cardinality m. Moreover, for prime p write Solvable

pow
p ∶= ⋃d>1 Solvablepd for the

class of solvable τsys-structures over a non-prime �eld of characteristic p. Our main result in
this section is the following.

�eorem 4.12. For each prime p the following hold:

(i) Solvablep is de�nable in FORp; and

(ii) Solvable
pow
p is de�nable in IFPRp.

It can be seen that there is a number term of IFPC that de�nes the �eld characteristic over

any structure of vocabulary τ�eld. Writing Solvable ∶= ⋃p prime(Solvablep∪Solvable
pow
p ), we

therefore get the following corollary.

Corollary 4.13. Solvable is de�nable in IFPRvar.

Keeping in mind the result of Atserias et al. [4] and our previous discussion, �eorem 4.12

immediately implies the separation of IFPC and IFPRp for each prime p. Furthermore, since
matrix rank can be computed in polynomial time, it follows that IFPRvar has polynomial-

timedata complexity, which is to say that all properties of �nite structures de�nable in IFPRvar

are decidable in polynomial time. �is shows that both IFPR and IFPRvar are candidate logics

for PTIME, as stated in the following.

Corollary 4.14. For each prime p, IFPC ≨ IFPRp ≦ IFPR ≦ IFPRvar ≦ PTIME.

�e proof of�eorem 4.12 is given in the next two subsections, where we separately consider

linear equations over prime �elds and linear equations over prime-power �elds.

4.2.1 Linear equations over prime �elds

In this section we consider systems of linear equations over a �nite �eld GFp, where p is
prime. Our aim is to prove part (i) of �eorem 4.12; that is, to show that for each prime p,
the query Solvablep is de�nable in FORp.
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�e proof we give is based on the following elementary result from linear algebra. Con-

sider a system of linear equations Ax = b over a �eld F. Such a system is solvable if and only
if b is contained in the span (over F) of the column vectors of A. In other words, the system
is solvable if and only if adding b as a new column to A does not increase the rank of the
matrix. �is relates the question of solvability to the calculation of matrix rank. However,

the rank operators we introduced in §4.1 apply only to matrices speci�ed by a number term

or a formula of a certain kind. In other words, these operators cannot be used directly on

matrices described by a structure of vocabulary τsys. �erefore, our main e�ort in this sec-
tion is to show that there are number terms of FORp that translate any linear system given by
a τsys-structure to an equivalent linear system on which we can apply rank operators. Once
this is done, it is straightforward to check if the original system of equations is solvable by

comparing the rank of two matrices, as described above.

More speci�cally, our proof of �eorem 4.12 (i) consists of three main steps. Firstly, we

consider systems of linear equations given by a pair of number terms α(x⃗ , y⃗) and β(x⃗)which
are interpreted over a �nite structureA. We show that there is a sentence of FORp, depending
only on α and β, that de�nes exactly the class of �nite structures A where the system

matx⃗ , y⃗(α,A)p ⋅ x = matx⃗(β,A)p

is solvable over GFp. �is follows more or less directly from the de�nition of the rank op-
erator rkp. Here, we write matx⃗(β,A)p to denote the GFp-column vector de�ned by β over
A in exactly the same way we described matrices in §4.1. Next, we use this result to show
that basic problems of graph reachability (symmetric and deterministic transitive closure)

can be described in FORp, by a reduction to the problem of deciding solvability of lin-
ear systems over GFp, de�ned by number terms as above. As a corollary, we establish that
FO+STC ≦ FORp and FO+DTC ≦ FORp. Finally, we show that there is a pair of number
terms of FORp[τsys] which over any linear system S, with prime �eld F, describe a system
of linear equations equivalent to S. Here we crucially rely on Lemma 3.1, which states that
there is an FOC+DTC-de�nable isomorphism F ≅ Zp which associates each element of F
with an integer in the range [0, p − 1]. Since FOC ≦ FORp and FO+DTC ≦ FORp, this iso-
morphism is also de�nable in FORp. Putting all these results together, we can �nally show
that the class of �nite solvable τsys-systems can be de�ned in FORp, which gives us the proof
of �eorem 4.12 (i).

Lemma 4.15. Consider a prime p let α(x⃗ , y⃗) and β(x⃗) be number terms in FORp[τ], where
x⃗ and y⃗ are tuples of element variables. �en there is an FORp[τ]-sentence φ for which it holds
that for any τ-structure A: A ⊧ φ if and only if the linear system described by α and β over A
is solvable over GFp.

Proof. Consider a τ-structure A along with number terms α(x⃗ , y⃗) and β(x⃗) of vocabulary
τ. Together, α, β and A describe the system of linear equations Aαx = bβ over GFp, where

Aα ∶= matx⃗ , y⃗(α,A)p is a matrix indexed by U(A)∥x⃗∥ × U(A)∥ y⃗∥ and bβ ∶= matx⃗(β,A)p is a
column vector indexed by U(A)∥x⃗∥. �is system is solvable if and only if adding bβ as a new
column to Aα does not increase the rank of the matrix, as discussed before. We show that
this condition can be expressed by a sentence of FORp. To do that, �rst consider the number
term de�ned by

γ(x⃗ , y⃗ y′; z) ≡ (1 − ηequal(z, y′)) ⋅ β + ηequal(z, y′) ⋅ α,
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where the number term ηequal(z, y′) ≡ #w((w = z) ∧ (z = y′)) takes value 1A ∈ N0 if z = y′
and takes value 0A ∈ N0 otherwise. Here z is a parameter that allows us to identify one
particular element ofA and we assume that y′,w and z are variables distinct from those in x⃗
and y⃗. OverA, γ(x⃗ , y⃗ y′) describes a matrix indexed byU(A)∥x⃗∥×U(A)∥ y⃗∥+1, which consists
of one copy of Aα and ∥A∥∥ y⃗∥ ⋅ (∥A∥−1) copies of the column vector bβ, stacked side-by-side.
Based on this, and the preceding discussion, it can now be seen that the following sentence

of FORp de�nes solvability of the system Aαx = bβ over A:

∀z (rkp(x⃗ , y⃗ y′).γ = rkp(x⃗ , y⃗).α).

Note that the matrix de�ned by γ on the le�-hand side of the equality will contain multiple
copies of the column vector bβ, which of course does not alter the solvability of the system.

We now consider the de�nability in FORp of certain graph-reachability problems. Our aim
is to show that FO+DTC ≨ FORp for any prime p, as discussed earlier. �e �rst problem we
consider is symmetric (s, t)-reachability, which, given a graph G with distinguished vertices
s and t, asks whether there is a path from s to t in G. We show that this problem is de�nable
in FORp.
Let G = (V , E) be a graph and let s and t be two vertices in V . For a prime p, let SG ,s,t

be the system of linear equations over GFp with variables xv for all v ∈ V and equations:

• xu − xv = 0, for every edge e = (u, v) ∈ E;

• xs = 1 and xt = 0.

We observe that the edge equations of SG ,s,t force variables xu and xv to take the same value
if u and v are in the same connected component of G. �is gives us the following lemma.

Lemma4.16. �e linear systemSG ,s,t is solvable overGFp if and only if there is no path between
s and t in the graph G.

Proof. For one direction, suppose x ∈ GFV
p is a solution to the system SG ,s,t . Label each

vertex v ∈ V with xv ∈ GFp. By equations xu − xv = 0, it follows that all vertices in the same
connected component of G must be assigned the same label. Equations xs = 1 and xt = 0
then imply that s and t belong to di�erent connected components of G, and are hence not
reachable from one another.

For the other direction, suppose there is no path between s and t in G. �en a solution
to SG ,s,t is obtained by setting xv = 1 for all vertices v in the connected component of G
containing s, and xv = 0 for all other v.

�e matrix of the system SG ,s,t is easily de�ned in the graph G by a numeric term η(x1x2, y)
taking the value 1 at (ss, s) and (tt, t), and for edges (u, v) ∈ E, taking the value 1 at (uv , u)
and −1 at (uv , v). Note that every edge equation is stated twice in equivalent ways, which
of course does not a�ect the solvability of the system. �is shows that there is a �rst-order

reduction from symmetric (s, t)-reachability to the problem of deciding solvability of linear
systems over GFp. By applying Lemma 4.15, we get the following result.

Lemma4.17 (Symmetric transitive closure). Symmetric (s, t)-reachability is de�nable inFORp
for all primes p.
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�e above method for de�ning reachability fails in general when applied to directed graphs.

We can, however, consider an important special case, which is graphs whose vertices have

out-degree at most one. Speci�cally, let G⃗ = (V , E⃗) be a directed graph. De�ne the deter-
ministic part Ed ⊆ E⃗ as all those edges (u, v) in E⃗ for which u has out-degree one. �at
is,

Ed ∶= {(u, v) ∈ E⃗ ∣ ∀w (E⃗(u,w) → (v = w))} ⊆ E⃗ .

Given G⃗ and vertices s, t ∈ V , the deterministic (s, t)-reachability problem asks whether there
is a path from s to t in the deterministic graph Gd ∶= (V , Ed).

Lemma 4.18 (Deterministic transitive closure). Deterministic (s, t)-reachability is de�nable
in FORp for all primes p.

Proof. Let G∗
d be the undirected graph obtained from Gd by removing any outgoing edge

from t and then taking the symmetric closure of Ed . Clearly, if there is a directed path from s
to t inGd , the same path connects s and t inG∗

d . Conversely, if P is an undirected s, t-path in
G∗
d , following P backwards from t to s we always use edges from Gd in the reverse direction
since all vertices have out-degree at most one and t has no outgoing edge. �us, there is a
path from s to t in Gd if and only if there is an undirected (s, t)-path in G∗

d . Observe that

the graphG∗
d is �rst-order de�nable over G⃗; that is, there is a �rst-order unary interpretation

that associates G∗
d to G⃗. Hence there is a �rst-order reduction from deterministic (s, t)-

reachability to symmetric (s, t)-reachability, and the lemma follows.

Corollary 4.19. On the class of all �nite structures, FO+STC ≨ FORp and FO+DTC ≨ FORp
for all primes p.

Proof. Let p be prime. We have shown that both symmetric and deterministic (s, t)- reach-
ability can be expressed in FORp. By treating s and t as parameters to the respective reach-
ability queries, it follows that both the symmetric transitive closure and the deterministic

transitive closure of any formula φ(x̄ , ȳ) can be expressed in FORp. For a separating exam-
ple, note that FO+STC and FO+DTC do not have the ability to count, and cannot express
that a set has an even number of elements (see e.g. Ebbinghaus [23]).

For the proof of�eorem 4.12 (i), it remains to show that linear systems represented by τsys-
structures can be described by number terms, as in the statement of Lemma 4.15. First note

that we can express both counting and deterministic transitive closure in FORp for any prime
p, as shown above. Hence, FOC+DTC ≦ FORp. It then follows from Lemma 3.1 that there is
a formula of FORp that maps any linear system over a �eld of cardinality p to an equivalent
linear system where the �eld is described by number terms. �is allows us to prove the

following result.

Lemma 4.20. For prime p, there are number terms α(x , y) and β(x) of FORp[τ⋆sys] for which
it holds that for any τsys-structure S over a �eld of cardinality p, S ∈ Solvablep if and only if the
linear systemmatx ,y(α, S)p ⋅ x = matx(β, S)p is solvable over GFp.

Proof. Let η(z) be a number term as in Lemma 3.1. �en for any linear system S of vocab-
ulary τsys, over a �eld F of cardinality p, it follows that η(z)F⋆ de�nes a �eld isomorphism
ι ∶ F → Zp, where every element of U(F) is mapped to an integer in the range [0, p − 1].
Now consider element variables x and y that range over the ‘row sort’ and ‘column sort’ of S,
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respectively. �en we de�ne the required number terms α(x , y) and β(x) by mapping each
matrix element occurring in the linear system S according to the isomorphism ι, as follows:

α(x , y) ≡ #w(∃z (A(x , y, z) ∧ (η(w) < η(z))) and
β(x) ≡ #w(∃z (B(x , z) ∧ (η(w) < η(z))).

Herew is an element variable that ranges over the ‘�eld sort’ of S and the counting operators
can be simulated by rank operators rkp, as shown before.

Finally, the proof of �eorem 4.12 (i) follows by combining Lemma 4.20 with Lemma 4.15.

4.2.2 Linear equations over prime-power �elds

In this section we study the solvability of linear equations over prime-power �elds. Our

aim is to prove part (ii) of �eorem 4.12; that is, to show that for each prime p, the query
Solvable

pow
p is de�nable in IFPRp. When combined with the results of the previous section

(concerning de�nability of Solvablep in FORp), this concludes the proof of �eorem 4.12.
�e idea behind our proof is as follows. Let p be prime and d > 1 an integer. �e �nite

�eld of non-prime cardinality pd is commonly represented as a quotient ringGFp[X]/(g(X))
where g(X) is a monic irreducible polynomial of degree d overGFp. �is was discussed fur-
ther in §2.7.2 and then §3.2. Another way to represent the elements of GFpd is to consider a
certain ring of invertible d × d matrices over GFp. �is kind of representation has the nice
property that the �eld operations overGFpd are simply the corresponding operations onma-
trices (in particular, the inverse of an element inGFpd is obtained by taking the inverse of the
corresponding matrix). �is approach was described in a short note by Wardlaw [66] and is

mentioned brie�y by Lidl and Niederreiter [53, Chapter 2]. A�er reviewing the construction

described by Wardlaw, we show how the resulting matrix representation can be expressed

over τ�eld-structures in IFPRp. �is in turn allows us to translate a linear system over GFpd ,
given as a structure in vocabulary τsys, to a (slightly larger) linear system over GFp which
is solvable if and only if the original system is solvable. �e proof then follows by applying

Lemma 4.15.

We start by reviewing some of the theory behind our construction. Write K = GFp for the
prime �eld with p elements and consider a monic (not necessarily irreducible) polynomial
g(X) = Xm + am−1Xm−1 + ⋅ ⋅ ⋅ + a1X + a0, where the ai are scalar coe�cients from K. �e
companion matrix of g(X) is the m ×m matrix

B ∶=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ ⋯ 0 −a0
1 ⋱ ⋮ ⋮
0 ⋱ ⋱ ⋮ ⋮
⋮ ⋱ ⋱ 0 ⋮
0 ⋯ 0 1 −am−1

⎞
⎟⎟⎟⎟⎟⎟
⎠

over K. �at is, B is obtained by taking an (m − 1) × (m − 1) identity matrix, adding a zero
row of lengthm−1 at the top and then appending the column vector −(a0 a1 ⋯ am−1)t to the
right of the resulting matrix. It is well known in linear algebra that the minimal polynomial

and characteristic polynomial of B are both equal to g(X) (see e.g. Horn and Johnson [42,
�eorem 3.3.14]). �us, g(B) = 0.



4.2. Systems of linear equations 64

Now let f (X) be a monic irreducible polynomial of degree d over K, let B be its com-
panion matrix and write F = GFpd . Because f (B) = 0 and the minimal polynomial of B is f ,
it follows that there is no polynomial g of degree less than d for which g(B) = 0. �erefore
the ring K[X]/( f (X)) is isomorphic to the ring of matrices K[B]/( f (B)), via the map that
sends a polynomial g ∈ K[X]/( f (X)) to the matrix g(B) ∈ K[B]/( f (B)). �us

F ≅ K[X]/( f (X)) ≅ K[B]/( f (B)) = K[B]/(0) ≅ K[B],

which shows that thematrix ringK[B] is a representation of the �eld F. HereK[B] is the ring
that consists of all sums of powers of B over K, with multiplication and addition obtained by
directly multiplying and adding the matrix elements. In particular, note that each matrix in

K[B] is invertible.
Since F ≅ K[B], it follows that K[B] has exactly pd elements, one of which is the zero

matrix 0 and another which is the identity matrix I. In general, it is not the case that K[B] =
{0, I, B, B2, . . . , Bpd−2}. However, since the multiplicative group F× is always cyclic (see
§2.7.2), we know there is a matrix M ∈ K[B] such that K[B] is generated by M — that is,

a matrixM for which it holds that

K[B] = ⟨M⟩ = {0, I,M ,M2
, . . . ,Mpd−2} = K[M].

One way to construct a monic irreducible polynomial of degree d over K is to consider the
minimal polynomial of a primitive element α ∈ F. �is was discussed in more detail in
§3.2. Consider a polynomial f (X) of this form and let B be its companion matrix. �en an
isomorphism ι between the �elds K[B] and F is given explicitly by ι ∶ g(B) ↦ g(α), for all
g(B) ∈ K[B], where g is a polynomial of degree less than d. �at is, if g(B) = cd−1Bd−1 +
⋅ ⋅ ⋅ + c1B + c0, where each ci ∈ K , then

g(α) = cd−1αd−1 + ⋅ ⋅ ⋅ + c1α + c0 ∈ F .

It necessarily follows that Bmust be a cyclic generator of K[B]. For otherwise, there must be
distinct integers k,m such that Bm = Bk . But then αm = ι(Bm) = ι(Bk) = αk , which implies
m = k as α is a cyclic generator of F×.

Our aim is now to show that we can de�ne in IFPC a matrix representation of the elements

of a �nite �eld of the form described above. Here we critically rely on Lemma 3.7, which says

that the minimal polynomial of a primitive element can be de�ned in IFPC. In order to for-

mally state our result, we need to introduce some new notation. Consider a τ�eld-structure
F, an integer m ≤ ∥F∥ and a number term η(x , y) in vocabulary τ�eld, where x and y are
element variables. If ⩽ is a linear ordering of U(F), then we write submatx ,y(η, F,m, ⩽) to
denote the integer matrix of dimensionm×m obtained frommatx ,y(η, F) by retaining only
rows and columns indexed by those elements a ∈ U(F) where the position of a in the order-
ing ⩽ is at most m. Also, for a primitive element α ∈ U(F) we write ⩽α for the ordering of
U(F) induced by α. �is ordering is de�nable in FOC+DTC by Corollary 3.6.

Lemma 4.21 (De�nable �eld isomorphism). �ere is an IFPC number term η(x , y, z) in
vocabulary τ�eld for which the following holds. Consider a τ�eld-structure F and a primitive
element α ∈ U(F). Let ∥F∥ = pd , where p is prime, and write B for the d×d companion matrix
of the minimal polynomial of α over Zp. Here we assume that the elements of B are integers
from the set {0, . . . , p − 1}. �en for any �eld element g ∈ U(F) ∖ {0Ff },
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the matrix Mg ∶= submatx ,y(η(x , y, g/z), F, d , ⩽α) is equal to Bi , where i is the
α-order of g in F.

Furthermore, let Mg be the all-zero matrix when g = 0Ff . It then follows that the map g ↦ Mg
de�ned by η(x , y, z) over F is an isomorphism F→ Zp[B], where we view each Mg as amatrix
over Zp.

Proof. Consider a τ�eld-structure F of cardinality pd and let α be a primitive element of F. By
Lemma 3.7, we can de�ne the minimal polynomial of α over Zp by a number term of IFPC.
From the term de�ning the minimal polynomial, it is straightforward to construct a number

term de�ning the corresponding companion matrix B. By Corollary 3.5 we can de�ne in
FOC+DTC the α-order of each element inF and thematrix powers Bi can be de�ned in IFPC
by a result of Blass, Gurevich and Shelah [9] (see also discussion in Chapter 3). �is �nally

allows us to consider the map f ↦ Bi where i is the α-order of an element f ∈ F. It should
be clear by the above that this map can be de�ned by a formula of IFPC, as required.

We conclude this section with the following lemma. �eorem 4.12 (ii) then follows by com-

bining the result with Lemma 4.15.

Lemma 4.22. For prime p, there are IFPRp number terms α(x , z, y,w) and β(x , z) in vocab-
ulary τsys for which it holds that for any τsys-structure Swith underlying �eld F of characteristic
p, S is solvable over F if and only if the linear system matxz,yw(α, S)p ⋅ x = matxz(β, S)p is
solvable over GFp.

�e proof of this lemma is based on the following idea. Consider a �nite �eld F = GFpd and
its prime �eld K = GFp. Let S ∶ Ax = b be a system of linear equations over F, where A is an
n ×m matrix and b is a column vector of length n. Let B be a d × d matrix over K such that
there is a �eld isomorphism ι ∶ F → K[B]. We can translate S to a system of linear equations
over K as follows. First, expand each of the variables in x to a d×d block of distinct variables.
Each of these variables will be assigned a value from K. Let xp denote the resulting block of
d×d variablematrices. Second, expand each element a of thematrix A to ι(a), a d×dmatrix
of elements from K. �is gives us an nd × md matrix Ap over K. Likewise, we can expand
each element of b in this way, which gives us an n × d matrix bp over K. Now it can be seen,
as ι is an isomorphism of �elds, that the system of linear equations Apxp = bp has a solution
over K if and only if Ax = b has a solution over F. Of course, the matrix equation Apxp = bp
is technically not a linear system in the traditional sense, as bp is a proper matrix and not a
vector. However, it can be turned into a linear system as follows:

For each linear equation a1x1 + . . . amxm = c of S over F, write

ι(a1)X1 + . . . ι(am)Xm = ι(c)

for the corresponding matrix equation over K, where each Xi is a d × d matrix
of distinct variables. �e expression on the le�-hand side can be written as a

d×d matrixM = (mi j)where each entrymi j is a linear polynomial in variables
x⃗ coming from the elements of X1, . . . , Xm. Writing ι(c) = (di j), it follows that
ι(a1)X1 + . . . ι(am)Xm = ι(c) can be seen as a system of d2 linear equations,
with equation (i , j) given by mi j(x⃗) = di j.
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Proof of Lemma 4.22. Consider a τsys-structure S with underlying �eld F of characteristic p.
By Corollary 3.4, the primitive elements of F can be de�ned by a formula of FOC+DTC ≨
FORp. Let γ ∈ U(F) be one such primitive element. By Lemma 4.21, we can de�ne in IFPC ≨
IFPRp a �eld isomorphism ι ∶ F → Zp[B], where B is the companion matrix of the minimal
polynomial of γ. Now we can follow the steps outlined above, and reduce the linear system S
over F to a system of linear equations over the prime �eld Zp. It can be seen that this system
can be described by a pair of number terms α(x , z, y,w) and β(x , z). Here the variables
z and w, ranging over the �eld (third) sort of S, are needed to describe the expansion of
the �eld of F to matrix elements from the ring Zp[B], using the ordering ⩽γ induced by γ.
Explicitly describing this construction is rather tedious, but fairly straightforward.

Now it should be clear from our earlier discussion that the system described by α and β
has a solution over Zp if and only if S has a solution over F. �e statement of the lemma now
follows by quantifying over all primitive elements γ.

4.3 Arity hieararchy of rank logics

For n ∈ N, we write Lω(Qn) to denote the logic obtained by augmenting �nite-variable
in�nitary logic with all Lindström quanti�ers of arity at most n. It was proved by Hella [37]
that for any n ∈ N, the logic Lω(Qn) is not expressive enough to de�ne all PTIME queries
on the class of �nite structures. More speci�cally, Hella shows that for each n ≥ 1, there is
a vocabulary τn+1 and a class of �nite τn+1-structures which is decidable in polynomial time
but not de�nable by any sentence of Lω(Qn). Since IFPC ≨ Lω(Q1), this result extends the
result of Cai, Fürer and Immerman [12] discussed in §1.1.

Our aim in this section is to show that the arities of rank operators yield a strict hierarchy.

For that purpose, we consider for each prime p and integer n ≥ 2 the rank logics FORp;n and
IFPRp;n de�ned in §4.1, where

FORp;n ≦ IFPRp;n ≨ Rω
p;n ≦ Lω(Qn).

Our main result is the following.

�eorem 4.23 (Strictness of the rank-arity hierarchy). For any integer n ≥ 2 and prime p
there is a vocabulary τn+1 and a class of �nite τn+1-structures which is de�nable by a sentence
of FORp;n+1 but not de�nable by any sentence of Lω(Qn). �us, IFPRp;n ≨ IFPRp;n+1 and
FORp;n ≨ FORp;n+1 for any n ≥ 2 and prime p.

We prove this theorem in two parts. In §4.3.1 we consider the original queries de�ned by

Hella to separate Lω(Qn) from PTIME and show that for each n ≥ 2, the corresponding
query on τn+1-structures can be expressed using a linear system over GF2 of arity n + 1. �is
shows the strictness of the rk2-arity hierarchy1. In §4.3.2 we brie�y describe how Hella’s
construction can be extended to work for all primes. As a result, we show the strictness of

the arity hierarchy of rkp for every prime p.
1
Keep in mind that the minimum arity of rank operators is two, so we only consider the logics FORp;n and

IFPRp;n for n ≥ 2.
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4.3.1 Hella’s construction for characteristic two

�roughout, we assume that all graphs are �nite, undirected and connected. �e following

construction is due to Hella [37].

De�nition 4.24 (Building blocks). For n ≥ 2, let Cn ∶= {c1, . . . , cn , d1, . . . , dn} denote a set
of size 2n. We equip Cn with the preorder ≺n de�ned by

x ≺n y ∶⇔ there are some i , j ∈ [n] with i < j such that x ∈ {ci , di} and y ∈ {c j , d j}.

Let Pn ∶= {d1, . . . , dn} ⊂ Cn and de�ne n-ary relations R+n and R−n by

(a1, . . . , an) ∈ R+n ∶⇔ a1 ≺n ⋯ ≺n an and ∥{i ∣ ai ∈ Pn}∥ ≡ 0 (mod 2),
(a1, . . . , an) ∈ R−n ∶⇔ a1 ≺n ⋅ ⋅ ⋅ ≺n an and ∥{i ∣ ai ∈ Pn}∥ ≡ 1 (mod 2).

∎

For n ≥ 2, let τn = (Rn , E , <) be a vocabulary where Rn is n-ary and both E and < are binary.
We note that τn depends on the integer n as it contains a relation symbol of arity n.

De�nition 4.25 (Hella structures). Let n ≥ 2 and assume G = (V , EG , <G) is a graph which
is regular of degree n, and <G is a strict linear order on V . For every vertex u ∈ V , �x an
enumeration hu ∶ {v ∣ (u, v) ∈ EG} → [n] of its n neighbours. �en for any S ⊆ V , we de�ne
the τn-structureDn(G , S) as follows, where we let DG = U(Dn(G , S)):

• DG ∶= V × Cn;

• RDn(G ,S)
n is the set of all tuples ((u, a1), . . . , (u, an)) in DG so that either u /∈ S and

(a1, . . . , an) ∈ R+n , or u ∈ S and (a1, . . . , an) ∈ R−n ;

• ED(G ,S) is the set of all pairs ((u, ci), (v , c j)) and ((u, di), (v , d j)) in (DG)2 such that
(u, v) ∈ EG , i = hu(v), and j = hv(u); and

• (u, a) <Dn(G ,S) (v , b) if and only if u <G v or (u = v) ∧ (a ≺n b).

∎

Notice that the ordering <D(G ,S) has width two, as for every (u, a) ∈ DG , there is exactly one
(u, b) ∈ DG with neither (u, a) <D(G ,S) (u, b) nor (u, b) <D(G ,S) (u, a). We call such (u, a)
and (u, b) an incomparable pair. Hella [37] proves the following:

Lemma 4.26. Let n ≥ 2 and assume G = (V , EG , <G) is an ordered and n-regular graph. �en
for all S , T ⊆ V, the structuresDn(G , S) andDn(G , T) are isomorphic if and only if ∥S∥ ≡ ∥T∥
(mod 2).

By this lemma, there are exactly two non-isomorphic structuresDn(G , S) for any n-regular
ordered graph G. Write An(G) ∶= Dn(G ,∅) and Bn(G) ∶= Dn(G , {u}) for some u ∈ V .
One of the main results of [37] is the following theorem, which shows that there is no �xed

sentence of Lω(Qn) that can distinguish between allAn+1(G) and Bn+1(G), with G ordered
and (n + 1)-regular.
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�eorem 4.27 (Non-de�nability of Hella structures). For any n ∈ N, there is a family of
ordered (n + 1)-regular graphs Gk with ∥Gk∥ = O(k2), so that for any Lω(Qn)-sentence φ
there is kφ ∈ N such that An+1(Gk) ⊧ φ⇔ Bn+1(Gk) ⊧ φ, for all k ≥ kφ.

In contrast, it can be shown that for any ordered n-regular graphG, with n ≥ 2, the two struc-
turesAn(G) andBn(G) can be distinguished by a polynomial-time algorithm. �eorem4.27
therefore implies that IFP(Qn) does not capture PTIME for any n ∈ N.

We now show that for n ≥ 3, An(G) and Bn(G) can be distinguished by a system of lin-
ear equations over GF2. More speci�cally, we show that given a τn-structure of the form
Dn(G , S), with n ≥ 3, there is a �rst-order de�nable linear system of arity n which is solvable
if and only if ∥S∥ is even. Here the arity of a linear systems Ax = b is simply the number of
variables needed to describe thematrix A and the column vector b overDn(G , S). Moreover,
we show there is a sentence of FOR2 using rank operators of arity at most n that can deter-
mine whether the system is solvable. Combined with �eorem 4.27 and FOR2;n ≨ Lω(Qn),
this gives us the following theorem.

�eorem 4.28 (Strictness of the rk2-arity hierarchy). For any n ≥ 2 there is an FOR2;n+1-
de�nable query that is not de�nable in Lω(Qn).

Now consider a generic τn-structure T = (V × Cn , RT
n , ET, <T), n ≥ 3. Let ST be the system

of linear equations overGF2 with variables x(u,a) for every (u, a) ∈ V ×Cn and the following
equations.

• Incomparable pair equations. For every incomparable pair (u, a), (u, b) we have the
equation:

x(u,a) + x(u,b) = 1.

• Edge equations. For each ((u, a), (v , b)) ∈ ET we have the equation:

x(u,a) + x(v ,b) = 0.

• R-equations. Finally, for every n-tuple ((u, a1), . . . , (u, an)) ∈ RT
n we have the equa-

tion:

x(u,a1) + . . . + x(u,an) = 0.

�e following is not hard to establish.

Lemma 4.29. �ere are �rst-order formulae α(x⃗ , y) and β(x⃗) in vocabulary τn, where x⃗ is
an (n − 1)-tuple of variables, which over any τn-structure T de�ne the linear system ST.

Proof. Write Ax = b for the system of linear equations ST over GF2. In the following, we
de�ne formulae α(x⃗ , y) and β(x⃗) which describe the (0, 1)-matrix A and the (0, 1)-vector
b over T, respectively. Here, x⃗ is an (n − 1)-tuple of element variables and n ≥ 3. First, we
de�ne the set of R-equations. Note that for every (n − 1)-tuple

a⃗ = ((u, a1), . . . , (u, an−1))

with a1 ≺n . . . ≺n an−1, there is at most one element (u, an) such that ((u, a1), . . . , (u, an)) ∈
RT
n . Given a tuple a⃗ of this form, let α(a⃗/x⃗ , y) express the linear equation x(u,a1) + . . . +



4.3. Arity hieararchy of rank logics 69

x(u,an) = 0. �at is, for all b ∈ U(T), α(x⃗ , y) is de�ned so that T ⊧ α[a⃗, b] if and only if
b = (u, ai) for some 1 ≤ i ≤ n. Similarly, β(x⃗) is de�ned so that T ⊧ ¬β[a⃗]. Clearly, this can
be expressed in �rst-order logic.

�e edge equations can be de�ned at row indices v1 . . . vn−2, vn−1 = v for which v1 = . . . =
vn−2 = w andwhere (w , v) ∈ ET. �at is, given an (n−1)-tuple a⃗ = (w , . . . ,w , v) of this form,
α(x⃗ , y) is de�ned so that for all b ∈ U(T) it holds that T ⊧ α[a⃗, b] if and only if b ∈ {v ,w}.
Moreover, for a tuple a⃗ of this form, β(x⃗) is de�ned so that T ⊧ ¬β[a⃗].
Finally, the incomparable pair equations can be de�ned at row indices v1 . . . vn−2, vn−1 = v

for which v1 = . . . = vn−2 = w and where (w , v) is an incomparable pair. More speci�cally,
given a tuple a⃗ = (w , . . . ,w , v) of this form, α(x⃗ , y) is de�ned so that for all b ∈ U(T) it
holds that T ⊧ α[a⃗, b] if and only if b ∈ {v ,w} and β(x⃗) is de�ned so that T ⊧ β[a⃗].

�e previous lemma shows that the linear system ST is �rst-order de�nable over any τn-
structure T. In the following we shi� our attention to τn-structures of the formDn(G , S).

Lemma 4.30. Let n ≥ 3 and consider an n-regular ordered graph G = (V , EG , <G). �en for
any S ⊆ V, the system SDn(G ,S) is solvable over GF2 if and only if ∥S∥ ≡ 0 (mod 2).

Proof. We �rst show that the system is solvable when S = ∅. In this case a solution can be
constructed explicitly by setting

x(u,a) =
⎧⎪⎪⎨⎪⎪⎩

0 if a = ci for some i ,
1 if a = di for some i ,

for all (u, a) ∈ V × C. Since SDn(G ,S) is de�nable by a �rst-order interpretation Θ by
Lemma 4.30 and Θ is invariant under isomorphism, it then follows that SDn(G ,S) is solvable
whenever ∥S∥ ≡ 0 (mod 2).
Claim 1. Any solution x of SDn(G ,S) induces an isomorphism ι ∶ Dn(G , S) → An(G) by letting

ι(u, ai) =
⎧⎪⎪⎨⎪⎪⎩

(u, ci) if x(u,a i) = 0,
(u, di) if x(u,a i) = 1.

Proof. �e map ι is well-de�ned since SDn(G ,S) ensures that in every incomparable pair
(u, ci), (u, di), exactly one of the corresponding variables is set to 1. It is immediately clear
that ι is an isomorphism with respect to E and <. Now if ((u, a1), . . . , (u, an)) ∈ RDn(G ,S)

n ,

wemust have x(u,a i) = 1 for an even number of i ∈ [n] since otherwise one of the R-equations
would be violated. �us, (ι(u, a1), . . . , ι(u, an)) ∈ RAn(G)

n by the de�nition ofRAn(G)
n and ι. If

((u, a1), . . . , (u, an)) ∉ RD(G ,S)
n we must have x(u,a i) = 1 for an odd number of i ∈ [n], since

replacing any (u, ai) with its incomparable partner gives a tuple in RDn(G ,S)
n whose sum is

forced to be even (by one of the the R-equations). �erefore (ι(u, a1), . . . , ι(u, an)) ∉ RAn(G)
n

and ι is an isomorphism.

By this claim, the system SDn(G ,S) is not solvable whenever ∥S∥ ≡ 1 (mod 2), which com-
pletes the proof.
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Combining Lemma 4.30 and Lemma 4.29, we see that there is a �rst-order reduction from

the problem of deciding if ∥S∥ is even, given a τn-structure of the form Dn(G , S), to the
problem of deciding the solvability of a system of linear equations over GF2. By Lemma 4.15,
there is a sentence φ of FOR2 that determines exactly when such a system Ax = b is solvable,
by comparing the rank of the matrix A and the augmented matrix (A ∣ b). However, a close
look at the proof of Lemma 4.15 reveals that this is obtained by using rank operators whose

arity is one greater than the arity of the formula de�ning the linear system. �iswould put φ ∈
FOR2;n+1, which does not give us the strictness result that we want. �at is, in order to prove
�eorem 4.23, we have to determine whether SDn(G ,S) has a solution without increasing the
arity of the linear system, which is (n − 1) + 1 = n. For this, we need the following lemma,
which is easy to prove. Here, if A is a matrix, c a column vector of A, and b a column vector
of the same dimension as c, then we write Ac,b to denote the matrix obtained from A by
replacing the column c with the column c + b.

Lemma 4.31. Let A be a matrix that does not have full column rank over some �eld F. �en
the linear system Ax = b is solvable if and only if rankAc,b ≤ rankA for all columns c of A.

Proof. If Ax = b is solvable, then b is in the span of the columns ci of A, which means that
there are ai ∈ F such that ∑i aici = b. Fix any column c. By a column basis of A we mean
a set of column vectors of A that is a basis for the vector space spanned by column vectors
of A. First, assume there is a column basis B of A that does not contain c. �en B is also a
column basis for Ac,b since c + b is in the span of B, and hence rankA = rankAc,b. Next,

assume that all column bases of A contain c and let B be such a column basis. Let B′ be
obtained from B by exchanging c with c + b and suppose there is a column c′i of Ac,b that is

not in the span of B′. �en (B′ ∖ {c + b}) ∪ {c′i} is a linearly independent set of columns
from A with the same cardinality as B, hence a column basis of A not containing c. �is
contradicts our assumption, and therefore B′ spans the column vector space of Ac,b. Hence,

rankAc,b = ∥B′∥ = ∥B∥ = rankA. Since column bases always exist, these two cases are
exhaustive and we conclude that rankAc,b ≤ rankA.
For the converse direction, suppose that Ax = b is not solvable, so b is not in the column

span of A. By assumption, A does not have full column rank. Let B be a column basis of A
and let c be a column which is not in B. �en c + b is not in the span of B since c is, but b is
not, and therefore rankAc,b = 1 + rankA > rankA.

Putting everything together, we can �nally prove the main theorem of this section.

Proof of �eorem 4.28. Consider an n-regular graph G = (V , EG , <G), with n ≥ 3, and let
S ⊆ V . Write Ax = b for the system of linear equations SDn(G ,S) overGF2. By Lemma 4.29, A
and b can be de�ned by �rst-order formulae α(x⃗ , y) and β(x⃗) over Dn(G , S), respectively,
where x⃗ is an (n − 1)-tuple of variables.
Since G is n-regular and n ≥ 3, it follows that G contains a cycle. Let H be such a cycle

and let J be the collection of all (u, a) ∈ V × Cn where u ∈ H and u has a neighbour v ∈ H
for which there is some b ∈ Cn with ((u, a), (v , b)) ∈ EDn(G ,S). �en it is readily veri�ed
that on every row, the sum of the entries in the columns indexed by J is zero in GF2. �us,
the matrix A does not have full column rank. Using Lemma 4.31, it is easy to construct a
sentence Ψ ∈ FOR2;n which determines the solvability of SDn(G ,S). �e theorem now follows
from Lemma 4.30 and�eorem 4.27.
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4.3.2 General construction for any prime characteristic

�e results of the previous section illustrate that the construction of Hella is essentially a

clever encoding of linear equations over GF2. In this section we describe brie�y how this
construction can be extended to work over GFp, for any prime p. Most of the proofs herein,
which can be obtained by adapting the corresponding proofs from Hella [37], are omitted.

De�nition 4.32 (Generalised building blocks). For n ≥ 2 and prime p, let

Cp
n ∶= {cri ∣ i ∈ [n], r ∈ [0, p − 1]}

denote a set, equipped with the preorder ≺p
n de�ned by

x ≺p
n y ∶⇔ there are some i , j ∈ [n] with i < j such that

x ∈ {cri ∣ r ∈ [0, p − 1]} and y ∈ {crj ∣ r ∈ [0, p − 1]}.

Let ρ ∶ Cp
n → [0, p − 1] be the function de�ned by ρ ∶ x ↦ s if and only if x = csi for some

i ∈ [n] and s ∈ [0, p − 1]. De�ne n-ary relations Rr
n for every r ∈ [0, p − 1] by

(a1, . . . , an) ∈ Rr
n ∶⇔ a1 ≺p

n ⋯ ≺p
n an and

n
∑
i=1

ρ(ai) ≡ r (mod p).

∎

Clearly, for p = 2 we obtain Hella’s building blocks from above, i.e. Cn = C2n. For n ≥ 2
and prime p, let τn,p ∶= (Rn , E0, . . . , Ep−1, <) be a vocabulary where Rn is n-ary and all other
relations are binary.

De�nition 4.33 (Generalised Hella structures). Let n ≥ 2 and assume G = (V , EG , <G) is
a graph which is regular of degree n, and <G is a strict linear order on V . For every vertex
u ∈ V , �x an enumeration hu ∶ {v ∣ (u, v) ∈ EG} → [n] of its n neighbours. �en for any
prime p and function γ ∶ V → [0, p − 1], we de�ne the τn,p-structure Dp

n(G , γ) as follows,
where we let DG ∶= U(Dp

n(G , γ)):

• DG ∶= V × Cp
n ;

• RDp
n(G ,γ)

n is the set of all n-tuples ((u, a1), . . . , (u, an)) in (DG)n for which it holds
that (a1, . . . , an) ∈ Rr

n, with r = γ(u).

• For each k ∈ [0, p− 1], EDp
n(G ,γ)

k is the set of all pairs ((u, cri ), (v , csj)) in DG ×DG , with

i , j ∈ [n] and r, s ∈ [0, p − 1], such that (u, v) ∈ EG , i = hu(v), j = hv(u) and r + s ≡ k
(mod p);

• (u, a) <D
p
n(G ,γ) (v , b) if and only if u <G v or (u = v) ∧ (a ≺p

n b).

∎

It can be seen that there is a �rst-order interpretation Θ of τn,2 in τn such that for any ordered
n-regular graphG = (V , EG , <G) and S ⊆ V , we have Θ(Dn(G , S)) = D2n(G , χS), where χS ∶
S → {0, 1} is the characteristic function of S. �e following lemma classi�es the generalised
Hella structures up to isomorphism. �e proof, which is similar to the proof of Lemma 4.26

above from [37], is omitted. Here, if γ ∶ V → [0, p − 1] is a function, then we write γ(V) ∶=
∑v γ(v).
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Lemma 4.34. Let p, n ≥ 2 with p prime and assume G = (V , EG , <G) is an ordered and n-
regular graph. �en for all γ, σ ∶ V → [0, p − 1], the structures Dp

n(G , γ) and Dp
n(G , σ) are

isomorphic if and only if γ(V) ≡ σ(V) (mod p).

It can be shown that the analogue of�eorem 4.27 also holds for the generalised Hella struc-

tures. �at is, it can be shown that for each n ∈ N, prime p and r ∈ [0, p − 1], there is
no sentence of Lω(Qn) that de�nes the class of all structures of the form Dp

n+1(G , γ) with
G = (V , EG , <G) ordered and (n+ 1)-regular and γ(V) ≡ r (mod p). �is can be proved by
viewing the pair (G , γ) as a circuit, where each vertex v is given a charge γ(v), and showing
that in a certain two-player game onDp

n+1(G , γ), one of the players has a strategy to hide the
total amount of charge γ(V) from the other player. �is strategy can be derived by playing
a nested “cops-and-robber game” on the circuit (G , γ). We omit the details here, but note
that a similar idea is used in Chapter 7 to construct a winning strategy in a di�erent kind of

game.

Finally, given a structure Dp
n+1(G , γ), it is not hard to construct for each r ∈ [0, p − 1]

a �rst-order de�nable linear system over GFp of arity n + 1 which is solvable if and only if
γ(V) ≡ r. Putting all this together, we get a proof of �eorem 4.23 for all primes p.

4.4 Relationships between rank logics

We conclude this chapter by summarising the known relationships between the rank logics

we have de�ned as well as some of the other logics we considered in this chapter.

Cω Rω
p Rω

IFPRQ IFPC IFPRp IFPR IFPRvar

FORQ FORp FOR FORvar

FOC FO+DTC

≡

Figure 4.1: Relationships between rank logics. �e direction of arrows indicates (semantic) inclusion
of the respective logics over �nitemodels; curved arrows (↪) denote proper inclusion. �e separation
of FOC and IFPC can be deduced e.g. from Etessami [47].



Chapter 5

First-order logic with rank

By extending �xed-point logic with operators for expressing the rank of de�nable matrix

relations, we obtain a logic which is strictly more expressive than IFPC and is potentially a

logic for PTIME. In order to understand both the strengths and limitations of this logic, it

is important to study howmuch of its expressive power relates to the inherent capabilities of

rank operators and how much of its expressive power relates to the interplay of rank terms

and inductive de�nitions. A natural starting point in that study is to consider rank operators

in the context of �rst-order logic.

In this chapter we study the extension FOR of �rst-order logic by rank operators and, for

every prime p, its fragment FORp that only has rank operators over the �eld GFp. It turns
out that these rank logics are surprisingly expressive. By a simple comparison of rank terms,

FOR is able to de�ne the solvability of systems of linear equations over a �nite �eld of prime

cardinality, as we discussed in Chapter 4. From the work of Atserias et al. [4], it then follows

that FOR ≢ IFPC. In this chapter we give further proof of this result, by showing that the two
other examples showing that IFPC ≨ PTIME—the problem of computing the parity of CFI
graphs and the problem of deciding isomorphism of multipedes—are both also de�nable in

FOR. �is is the subject of §5.1. In §5.2 we establish the descriptive complexity of �rst-order

rank logics over ordered �nite structures by proving that for each prime p, FORp captures
MODpL and that FORQ captures L

C=L, which are natural complexity classes that characterise

di�erent levels of logarithmic space complexity. �ese results further cement the status of

�rst-order rank logics as objects worthy of study in themselves.

5.1 Expressive power of FOR

In [12], Cai, Fürer and Immerman showed that IFPC does not capture PTIME on the class of

all �nite structures, thereby settling what had been an important open problem in descrip-

tive complexity theory. For the proof, they constructed a query on a class of graphs that can

be de�ned by a polynomial-time computation but not by any sentence of IFPC. Since then,

other constructions that expose the limitations of IFPC have been given. Gurevich and She-

lah [36] de�ned a class of �nite rigid structures known as multipedes, and considered the
problem of uniformly de�ning a linear order over this class. �ey showed that this problem,

while computable in polynomial time, is not expressible by any �xed formula of IFPC. Blass,

Gurevich and Shelah [9] later turned this construction into a decision problem and proved

73
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that IFPC is not able to tell whether two given multipedes (each with a designated vertex)

are isomorphic or not; a problem which again is decidable in polynomial time.

In this section we show that both these decision problems separating IFPC from PTIME can

be expressed in the logic FOR2, by considering �rst-order de�nable systems of linear equa-

tions overGF2. �is gives us yet another separation of the �xed-point logics IFPC and IFPR,
in addition to results concerning solvability of linear equations over a �nite �eld. �rough-

out, all graphs are assumed to be undirected, unless otherwise noted.

5.1.1 Cai-Fürer-Immerman graphs

We recall the de�nition of Cai-Fürer-Immerman (CFI) graphs, which were constructed by

Cai et al. [12] to de�ne the query separating IFPC from PTIME. �e following presentation

of the graphs is adapted fromDawar et al. [21], who show that the CFI query can be expressed

in the logic of choiceless polynomial time. Note that, unlike the presentation in [21], we do

not require an ordering on the underlying graph G.

De�nition 5.1 (CFI graphs). Let G = (V , E) be a connected graph with at least two vertices
and let T ⊆ V . �eCFI graphGT = (V∗, E∗,C∗) is a two-coloured graph with vertex setV∗,
edge relation E∗ and a unary relation C∗, denoting the colour, which are de�ned as follows.

• Vertices. Denote the set of edges incident to v ∈ V by E(v). For each vertex v ∈ V , let
I(v) be the collection de�ned by

I(v) ∶=
⎧⎪⎪⎨⎪⎪⎩

{vZ ∶ Z ⊆ E(v) and ∣Z∣ ≡ 1 (mod 2)} if v ∈ T ,
{vZ ∶ Z ⊆ E(v) and ∣Z∣ ≡ 0 (mod 2)} if v ∈ V ∖ T .

De�ne three collections of elements V̂ ∶= ⋃v∈V I(v), Ê ∶= {e0, e1 ∣ e ∈ E} and Ĉ ∶=
{ec ∣ e ∈ E}. Finally, set V∗ ∶= V̂ ∪ Ê ∪ Ĉ.

• Edges. De�ne the edge relation E∗ ⊆ V∗ × V∗ by

E∗ ∶={{vZ , e1} ∶ v ∈ V , vZ ∈ I(v) and e ∈ Z} ∪
{{vZ , e0} ∶ v ∈ V , vZ ∈ I(v) and e ∈ E(v) ∖ Z} ∪
{{ei , ec} ∶ e ∈ E and i ∈ {0, 1}}.

• Colour relation. Finally, de�ne the unary colouring relation C∗ ∶= Ĉ ⊂ V∗. �at is, all
the vertices ec are coloured in the same way and di�erently from all the other vertices.

∎

Note that the rôle of the ec vertices and the relation C∗ in the de�nition ofGT is only to allow
the nodes ei to recognize their respective partners e1−i . We refer to the sets of vertices Ĉ, Ê
and V̂ as the colour nodes, outer nodes and inner nodes of GT , respectively. �e parity of a
CFI graph GT is the parity of ∥T∥. We say GT is even if it has even parity and odd if it has
odd parity. An example of a CFI graph is given in Figure 5.1.
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Figure 5.1: A fragment of a CFI graph GT constructed for a vertex v ∉ T ⊆ V of degree three, where
G = (V , E) and T ⊆ V . Here E(v) = {e , f , g} and N(v) = {ue , u f , ug}. �e vertex v is shown in
the inset with the three edges in E(v) labelled. �e main �gure shows the inner nodes I(v) and the
outer nodes constructed from the edges E(v). Because v ∉ T , all the inner nodes are connected to an
even number of outer nodes with a “1” subscript. Note that there will be edges connecting each of the
outer nodes to the inner nodes constructed from the respective neighbour of v in G. For instance, in
GT there will be edges connecting e0 and e1 to the inner nodes of I(ue), and so on.

In [12], Cai et al. show the following.

• For a connected graph G, where every vertex has degree at least two, and all T , S ⊆
V(G), the graphs GT and GS are isomorphic if and only if they have the same parity.
Hence there are exactly two non-isomorphic structures GT for any graph G.

• While there is a polynomial-time algorithm that can distinguish between the odd and

even CFI graphs of any graph G, there is no �xed sentence of IFPC that can do the
same.

We now show that the odd and evenCFI graphs of any graphG can be distinguished in FOR2.
Let G = (V , E) be a connected graph where every vertex has degree at least two, let T ⊆ V
be a collection of vertices and let GT be a CFI graph constructed from G and T . Let SGT be

a system of linear equations over GF2 with variables xe i for all ei ∈ Ê and xvZ for all vZ ∈ V̂ ,
and the following equations.

• Outer node equations. For each ei ∈ Ê we have the equation:

xe i + xe1−i = 1.
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• Inner node equations. For each vZ ∈ V̂ we have the equation:

∑
e∈Z

xe1 + ∑
e∈E(v)∖Z

xe0 = ∑
vY∈I(v)

xvY .

• Parity equation. Finally, we have the following equation:

∑
vZ∈V̂

xvZ = 0.

�e intuition behind this construction is as follows. Firstly, the outer node equations en-

sure that for each e ∈ E, the pair of variables xe1 and xe0 must take opposite values in GF2.
Secondly, observe that for any two inner nodes vZ , vX ∈ V̂ derived from the same vertex
v ∈ V , the right-hand side ∑vY∈I(v) xvY of the two corresponding inner node equations are
the same. Furthermore, the variables appearing in the sum on the right-hand side appear

only in those inner node equations that are derived from the vertex v. As a consequence,
any assignment of values to these variables ensures that the right-hand side of all the inner

node equations derived from v have the same value, which we call xv . �e idea here is that
xv = 1 if v ∈ T and xv = 0 otherwise. Finally, the parity equation sums up all the variables
xvZ appearing on the right-hand side of the inner node equations. From the above, it is clear
this amounts to summing up all the distinct xv . By the above, this sum should then equal the
parity of ∥T∥.

�e following is not hard to establish.

Lemma 5.2. SGT is �rst-order de�nable over GT .

Proof. Write τCFI = {RE , RC} for the vocabulary of GT , where RGT

E = E∗ and RGT

C = C∗. If
x ∈ U(GT) and Y ⊆ U(GT) is a non-empty set then we say that x is connected to Y if there is
at least one vertex y ∈ Y such that (x , y) ∈ E∗.
To describe the system SGT in �rst-order logic, we �rst note that there are �rst-order

formulae φc(x), φo(x) and φi(x) that de�ne the sets Ĉ, Ê and V̂ , respectively. More specif-
ically,

φc(x) ≡ RC(x),
φo(x) ≡ ∃y (φc(y) ∧ RE(x , y)), and
φi(x) ≡ ¬(φc(x) ∨ φo(x)).

Similarly, there is a �rst-order formula

θo(x , y) ≡ (x ≠ y) ∧ φo(x) ∧ φo(y) ∧ ∃z (φc(z) ∧ RE(x , z) ∧ RE(y, z)),

that says that x and y are distinct outer nodes derived from the same edge e ∈ E.
We also need a �rst-order formula θ i(x , y) that relates a pair of distinct inner nodes x

and y if and only if x and y are derived from the same vertex v ∈ V . To de�ne θ i(x , y),
observe that for any pair of (not necessarily distinct) inner nodes vY and vZ derived from
the same vertex v ∈ V , there are at least two distinct edges e , f ∈ E such that both vY and vZ
are connected to {e0, e1} and both vY and vZ are connected to { f0, f1} (see Figure 5.1 for an
illustration). Conversely, if uW is an inner node derived from a vertex u ∈ V and u ≠ v, then
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there is at most one edge e ∈ E such that both vY and uW are connected to {e0, e1}. Indeed, if
such an edge e ∈ E exists then necessarily e = {u, v}. �is observation can be used to de�ne
the formula θ i(x , y). To see that, �rst de�ne a formula

Ψconn(x , z,w) ≡ φi(x) ∧ θ0(z,w) ∧ (RE(x , z) ∨ RE(x ,w)),

which says that x is an inner node, z and w are distinct outer nodes derived from the same
edge and x is connected to {z,w}. In other words, for all vY ∈ V̂ and e j , e1− j ∈ Ê, where
j ∈ {0, 1}, it holds that

GT ⊧ Ψconn[vY , e j , e1− j] if and only if v ∈ e .

We also de�ne

Ψshare(x , y, z,w) ≡ (x ≠ y) ∧Ψconn(x , z,w) ∧Ψconn(y, z,w),

which states that x and y are distinct inner nodes both connected to the set {z,w} of outer
nodes. Finally, we let

θ i(x , y) ≡ ∃z1, z2, z3, z4 ⋀
j≠k

(z j ≠ zk) ∧ Ψshare(x , y, z1, z2) ∧ Ψshare(x , y, z3, z4),

which has the desired properties.

�e system SGT can now be de�ned by formulae φ(x , y) and β(x) overGT in the following
way. �e equations for the outer nodes ei are de�ned at row indices a for which (GT , a) ⊧ φo.
Similarly, the equations for inner nodes vZ are de�ned at row indices a for which (GT , a) ⊧
φi , using θ i(x , y) and the fact that the set of e1 with e ∈ Z is exactly the neighbourhood of
vZ in GT , and the set of e0 with e ∈ E(v) ∖ Z can be de�ned similarly. Finally, the equation
that sums all the xvZ can be de�ned at row indices a for which (GT , a) ⊧ φc ; there will be
multiple copies of this equation, which of course does not a�ect the solvability of the system.

�e de�nition of β(x) follows similarly.

Lemma 5.3. �e system SGT is solvable if and only if GT is even.

Proof. We show that the system is solvable when ∥T∥ = 0 and not solvable when ∥T∥ = 1.
Since SGT is de�nable by a �rst-order interpretation Θ by Lemma 5.2 and Θ is invariant

under isomorphism, it then follows that SGT is solvable if and only if ∥T∥ is even.

First suppose T = ∅. In this case it is readily veri�ed that any assignment that puts xe i = i for
all ei ∈ Ê and∑vY∈I(v) xvY = 0 for all v ∈ V is a solution to SGT . Next suppose T = {u}where
u is an arbitrary vertex in V . Fix one edge f ∈ E(u) and consider the following equations
from SGT :

• for every v ∈ V ∖ {u}: ∑e∈E(v) xe0 = ∑vY∈I(v) xvY ,

• for u: (∑e∈E(u)∖{ f } xe0) + x f1 = ∑uY∈I(u) xuY .

In this subsystem, there is exactly one equation for each v ∈ V . It follows that for all e ∈
E ∖ { f }, the variable xe0 occurs exactly twice on the le�-hand side of the system, as each
edge is connected to two vertices v ∈ V . However, for the edge f , we get both x f0 and x f1
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on the le�-hand side. Summing up all the above equations we therefore get on the le�-hand

side:

( ∑
v∈V∖{u}

∑
e∈E(v)

xe0) + ( ∑
e∈E(u)∖{ f }

xe0) + x f1

= 2 ⋅ ( ∑
e∈E∖{ f }

xe0) + x f0 + x f1

= x f0 + x f1 = 1,

where the last equality comes from the outer node equation derived from f in SGT and the

summation is over GF2. However, at the same time we get on the right-hand side:

∑
v∈V

∑
vY∈I(v)

xvY = ∑
vZ∈V̂

xvZ = 0,

where the last equality comes from the parity equation in SGT (the last equation). �erefore,

the system SGT is inconsistent and has no solution.

�e preceding lemmas now establish that there is a �rst-order reduction from the problem

of distinguishing odd and even CFI graphs to the problem of deciding solvability of linear

systems over GF2, which can be de�ned in FOR2 by �eorem 4.12. Since FOR2 is closed
under �rst-order reductions, we get the following theorem.

�eorem 5.4 (CFI query in FOR2). �ere is a sentence φCFI ∈ FOR2 that holds in structures
GT when ∥T∥ is even but not in structures GT when ∥T∥ is odd.

5.1.2 Isomorphism of multipedes

In [36], Gurevich and Shelah showed that there is a �rst-order axiomatisable class of �nite

rigid structures, known as multipedes, for which there is no formula of Cω that can de�ne a
linear ordering on all class members. As mentioned earlier, Blass, Gurevich and Shelah [9]

later turned this construction into a decision problem and showed that no �xed sentence of

Cω, let alone IFPC, can distinguish between a pair of similar but non-isomorphicmultipedes.
In this section we show that the problem of deciding isomorphism of multipedes can be

expressed in FOR2, by exhibiting a �rst-order de�nable reduction to the problem of deciding

solvability of linear equations over GF2. �is is based on the same idea as the reduction we
presented in the previous section, although the construction here is more involved. We start

by recalling the de�nition of multipedes from [36].

De�nition 5.5 (Multipedes). Let τmpede ∶= {F , S ,H, P, ≤M , R, c} be a vocabulary where S
and F are unary relation symbols,H and P are ternary relation symbols, ≤M and R are binary
relation symbols and c is a constant symbol. Amultipede is a �nite structureM in vocabulary
τmpede which satis�es the following conditions.

• �e universe U(M) is partitioned into two parts FM and SM. We refer to the elements
of FM as the feet ofM and the elements of SM as the segments ofM. For each segment,
there are exactly two feet; i.e. ∥FM∥ = 2∥SM∥.

• ⩽MM is a total order on the set of segments.
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• RM ⊆ F × S is the graph of a function ρ ∶ F → S from feet to segments such that each
segment is the image of exactly two feet.

Abusing notation, we extend ρ to a map ρ ∶ ℘(F) ↦ ℘(S) by setting ρ(X) ∶= {ρ(x) ∶
x ∈ X}, for all X ∈ ℘(F).

• �e constant cM ∈ F denotes the unique ‘foot with a shoe’. �e segment in S which is
connected to the shoe cM should always be the �rst element in the ordering ⩽M.

• HM ⊆ S × S × S is a totally irre�exive and symmetric relation that encodes a family
Σ ⊆ ℘(S) of three-element subsets of S, called hyperedges.

• PM ⊆ F × F × F is a totally irre�exive and symmetric relation that encodes a family
Π ⊆ ℘(F) of three-element subsets of F, called positive triples. For each positive triple
p ∈ Π, the image ρ(p) ⊆ S is a hyperedge.

• If h ∈ Σ is a hyperedge, then there are exactly eight triples of feet mapped by ρ onto h.
Out of these eight triples, exactly four are positive. Moreover, if X ,Y ⊆ Π are positive
triples of feet with ρ(X) = ρ(Y) = h, then ∥X △ Y∥ ≡ 0 (mod 2), where X △ Y
denotes the symmetric di�erence of X and Y . In other words, if ρ(X) = ρ(Y) = h
then Y can be obtained from X by interchanging the two feet of an even number of
segments in h. ∎

Remark. Gurevich and Shelah consider more than one type of multipede in their paper [36].
In particular, they refer to the multipedes we consider here as ‘3-multipedes, to distinguish

them from 1-, 2- and 4-multipedes. As we will only consider 3-multipedes in the present

discussion, this distinctionwill be unnecessary. �e 3-multipedes ofGurevich and Shelah did

not actually have a designated vertex with a shoe; that de�nition comes from Blass et al. [9],

who described the multipede isomorphism problem we consider here. Finally, note that the

number ‘3’ in the term 3-multipede does not refer to the fact that each hyperedge in Σ has

size three.

�e isomorphismproblem formultipedes takes as input a pair ofmultipedes and askswhether

the two multipedes are isomorphic. �is problem can be turned into a Boolean query which

consists of all pairs of multipedes (M1,M2) withM1 ≅ M2; here a pair of multipedes can be
represented as a single �nite structure as we will explain below. In [9] Blass et al. show the

following.

• �e isomorphism problem for multipedes can be decided in polynomial time.

• �e isomorphism problem formultipedes is not de�nable in Cω and hence not in IFPC
either.

In the following we �x a pair of multipedesM1 andM2 presented as a single relational struc-
tureM ∶=M1∪̇M2 in vocabulary {F1, S1,H1, P1, ≤1, R1, c1}∪ {F2, S2,H2, P2, ≤2, R2, c2}, where
≤1 and ≤2 denote the two respective linear orders of segments, as discussed earlier. We write
Πi , Σi and ρi for the set of positive triples, the set of hyperedges and the function mapping
feet to segments, respectively, implicit in the de�nition of eachMi , where i ∈ {1, 2}. Write
ρ ∶= ρ1 ∪ ρ2 for the function whose domain is the union of FM1

1 and FM2
2 .
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Figure 5.2: A multipede with 34 segments and a shoe. �e hypergraph over the segments has three
hyperedges: {34, 7, 16}, {10, 1, 21} and {7, 2, 23}. It follows that the multipede has 12 positive triples,
four for every hyperedge (although these are not shown in the �gure). Lines connecting feet to seg-

ments represent the function ρ; note that each segment is connected to exactly two feet.

For i ∈ {1, 2}, write θ i(x , y) ≡ Si(x) ∧ Si(y) ∧ (y ≤i x) ∧ (y ≠ x) for the formula that
says that x and y are segments belonging to the same multipede, and y is strictly less than x
in the ordering ≤i . De�ne the FOC-term

ord(x) ≡ #y(θ1(x , y) ∨ θ2(x , y))

for which it holds that whenever either S1(x) or S2(x) holds, ord(x) denotes the position of
x in the respective segment ordering ≤1 or ≤2. �en the formula

η(x⃗ , y⃗) ≡
3

⋀
i=1

(S1(xi) ∧ S2(yi) ∧ (ord(xi) = ord(yi))) (∗)

de�nes over M the graph of a function (SM1 )3 → (SM2 )3 that sends s⃗ ↦ t⃗ if and only if the
triples s⃗ and t⃗ occur at the same position in the lexicographic ordering of triples induced
by ≤M1 and ≤M2 , respectively. Here x⃗ = (x1, x2, x3) and y⃗ = (y1, y2, y3) are triples of distinct
variables. Finally, de�ne a sentence of FOC

hyperiso ≡ (#x(S1(x)) = #x(S2(x))) ∧ ∀x⃗ y⃗ η(x⃗ , y⃗) →(H1(x⃗) ↔ H2( y⃗)).

�enM ⊧ hyperiso if and only if the two hypergraphs

(SM11 ,H
M1
1 , ≤

M1
1 ) and (SM22 ,H

M2
2 , ≤

M2
2 )

are isomorphic. Assume herea�er that hyperiso is satis�ed inM and let

ι ∶ (SM11 ,H
M1
1 , ≤

M1
1 ) → (SM22 ,H

M2
2 , ≤

M2
2 )
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be the (unique) isomorphism of the two hypergraph structures de�ned by η(x⃗ , y⃗), above.
Now all that remains to decide ifM1 ≅M2 is to check whether the feet of the two multipedes
can be matched up to preserve (a) the shoe constant, (b) the function that associates feet

with segments and (c) positivity of feet triples. By our discussion above, it is clear that this

problem is not expressible in Cω. However, we show that it is expressible in FOR2, as follows.

Consider the set V ∶= FM1
1 ∪̇FM2

2 ∪̇Σ1 and let SM be the system of linear equations over GF2
with variables xv for all v ∈ V and the following equations.

• Segment equations. For each segment s ∈ SM11 ∪ SM22 , with a pair of feet ρ−1(s) = {e , f },
we add the equation

xe + x f = 1.

�at is, xe and x f must take opposite values in GF2.

• Hyperedge equations. For each hyperedge h ∈ Σ1 we add exactly 2×8 equations. Firstly,
we add one of the following equations for each three-element set of feet {e , f , g} ⊆ FM1

that ρ1 maps onto h:

(xe + x f + xg) + xh = 1 if {e , f , g} ∈ Π1,
(xe + x f + xg) + xh = 0 if {e , f , g} ∉ Π1.

Secondly, we add one of the following equations for each three-element set of feet

{e , f , g} ⊆ FM2 that ρ2 maps onto ι(h) ∈ Σ2:

(xe + x f + xg) + xh = 1 if {e , f , g} ∈ Π2,
(xe + x f + xg) + xh = 0 if {e , f , g} ∉ Π2.

Note that we use the same variable xh for the equations de�ned by sets of feet from
FM1 as well as the equations de�ned by sets of feet from FM2 .

• Shoe equation. Finally, we add the following equation for the pair of shoes e = cM11 , f =
cM22 :

xe + x f = 0.

�at is, xe and x f must take the same value in GF2.

We can index the equations in SM by the set

E ∶= SM11 ∪ SM22 ∪ (FM1
1 × FM1

1 × FM1
1 × Σ1) ∪ (FM2

2 × FM2
2 × FM2

2 × Σ1).

Observe that the set of hyperedges Σ2 does not appear in E.

Lemma 5.6. SM is �rst-order de�nable overM.

�e proof of this lemma is straightforward though rather tedious.
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Proof. �roughout this proof, we will use lower-case Latin characters x , y, z, . . . to denote
variables that range over feet and we will use lower-case Greek characters υ, µ, γ, . . . to de-
note variables that range over segments. Note that this is purely for notational purposes;

all variables ranging over U(M) are untyped. We also write x⃗ , y⃗, . . . and υ⃗, µ⃗, . . . to denote
triples of variables, where the individual components are indexed as x⃗ = (x1, x2, x3), for ex-
ample.

In our de�nition of the system SM we will have to �nd a unique triple (e , f , g) to repre-
sent each hyperedge {e , f , g} ∈ Σ1, to ensure the correctness of the linear system (that is, we
want only one variable xh for each hyperedge h). For that purpose, we consider for i = 1, 2
the formula

θhyp,i(υ⃗) ≡ ⋀
j
Si(υ j) ∧Hi(υ⃗) ∧ (υ1 ≤i υ2) ∧ (υ2 ≤i υ3),

for which it holds that for all hyperedges {e , f , g} ∈ Σi , (M, e , f , g) ⊧ θhyp,i(υ⃗) if and only if
e , f , g are listed in increasing order with respect to ≤Mi . To de�ne the systemSM we now con-
sider each type of equation separately. For tuples of variables (x1, . . . , xm) and (y1, . . . , ym),
we will write (x1, . . . , xm) = (y1, . . . , ym) as a shorthand for ⋀i(xi = yi).

• �e segment equations can be de�ned by formulae

αseg(υ; y) ≡(S1(υ) ∧ F1(y) ∧ R1(y, υ)) ∨ (S2(υ) ∧ F2(y) ∧ R2(y, υ)) and
βseg(υ) ≡S1(υ) ∨ S2(υ).

• We use the formula

γ1(x⃗ , υ⃗) ≡ θhyp,1(υ⃗) ∧⋀
i
R1(xi , υi)

to pick out those rows that are indexed by a triple of feet (e , f , g) ∈ (FM1
1 )3 and a

hyperedge h ∈ Σ1 with ρ1({e , f , g}) = h. Similarly, we use the formula

γ2(x⃗ , υ⃗) ≡ ∃µ⃗ (θhyp,1(υ⃗) ∧ θhyp,2(µ⃗) ∧⋀
i
(ord(µi) = ord(υi)) ∧⋀

i
(R2(xi , µi))

to pick out those rows that are indexed by a triple of feet (e , f , g) ∈ (FM2
2 )3 and a

hyperedge h ∈ Σ1 with ρ2({e , f , g}) = ι(h). Here ι is the isomorphism of hypergraphs
we have �xed before. Observe that the isomorphism ι simply maps each segment in
SM11 to the segment in SM22 at the same position in the respective segment ordering;

that is, for all segments s ∈ SM1 , ι(s) = t if and only if ord(x)(M1 ,s) = ord(x)(M2 ,t).
We also de�ne a formula

θref(υ⃗) ≡ (υ1 = υ2) ∧ (υ1 = υ3) ∧ S1(υ1) ∧ (ord(υ1) = 1N),

for which it holds that M ⊧ θref[s1, s2, s3] if and only if s1 = s2 = s3 = s ∈ SM11 and s
is the �rst segment in the ordering ≤M11 . �at is, we treat (s, s, s) as a �xed “reference
triple” of segments, which explains the naming of the formula. �is formula will be

used to ensure that variables in the hyperedge equations won’t be repeated, as we see

below. In particular, note that (s, s, s) is not a hyperedge.
�e hyperedge equations overM1 can now be de�ned by formulae

αhyp,1(x⃗ , µ⃗; y, λ⃗) ≡γ1(x⃗ , µ⃗) ∧ (((
3

⋁
i=1

(y = xi)) ∧ θref(λ⃗)) ∨ ((µ⃗ = λ⃗) ∧ (y = c1)))
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and

βhyp,1(x⃗ , µ⃗) ≡γ1(x⃗ , µ⃗) ∧ P1(x⃗).

Note that in the de�nition of αhyp,1(x⃗ , µ⃗; y, λ⃗), we used the shoe constant c1 to ensure
that each equation contains exactly one occurence of a “hyperedge variable” xh.
�ehyperedge equations overM2 can be similarly de�nedby formulae αhyp,2(x⃗ , µ⃗; y⃗, λ⃗)
and βhyp,2(x⃗ , µ⃗).

• �e shoe equation can be de�ned by formulae

αshoe(x1, x2; y) ≡(x1 = c1) ∧ (x2 = c2) ∧ (x1 = y1) ∧ ((y = x1) ∨ (y = x2)) and
βshoe(x1, x2) ≡(x1 ≠ x1).

Finally, the system SM can be de�ned by formulae α(υ, x⃗ , µ⃗; y, λ⃗) and β(υ, x⃗ , µ⃗) over M,
where

α(υ, x⃗ , µ⃗; y, λ⃗) ≡((x1 = x2) ∧ (x2 = x3) ∧ θref(λ⃗) ∧ αseg(υ; y))
∨((x1 ≠ x2) ∧ (x2 = x3) ∧ θref(λ⃗) ∧ αshoe(x1, x2; y))
∨((x1 ≠ x2) ∧ (x2 ≠ x3) ∧ (x1 ≠ x3) ∧ (αhyp,1(x⃗ , µ⃗; y, λ⃗) ∨ αhyp,2(x⃗ , µ⃗; y, λ⃗))),

and β(υ, x⃗ , µ⃗) is de�ned similarly. Here the intended meaning is that the segment equations
are indexed by tuples υx⃗ µ⃗ when all the components of x⃗ are equal, the shoe equation is
indexed by a tuple υx⃗ µ⃗ when x1 ≠ x2 = x3, and the hyperedge equations are indexed by
tuples υx⃗ µ⃗ when all the components of x⃗ are distinct. Note that there is redundancy in this
description as some of the equations will be repeated a number of times. However, this does

of course not a�ect the solvability of the system.

Recall that we assume that M ⊧ hyperiso and that there is an isomorphism ι of the two
disjoint segment hypergraphs inM.

Lemma 5.7. �e system SM is solvable if and only ifM1 ≅M2.

Proof. First, suppose SM is solvable and let T ∶ V → GF2 be an assignment of values to the
variables (xv)v∈V that satis�es SM. De�ne a map γ ∶ FM1

1 → FM2
2 that pairs together each foot

ofM1 with a foot ofM2 as follows:

γ( f ) = g ∶⇔ ι(ρ1( f )) = ρ2(g) and T( f ) = T(g),

for all f ∈ FM1
1 and g ∈ FM2

2 . �at is, for each segment s ∈M1, γmaps the two feet attached to
s to the two feet attached to ι(s) inM2, where ι is the isomorphism of segment hypergraphs
we have �xed earlier. �ere are two possible injective mappings from the pair of feet ρ−11 (s)
to the pair of feet ρ−11 (ι(s)) and γ is de�ned by choosing the one mapping that agrees with
the truth assignment T ; that is, a foot f is mapped to a foot g if, and ony if, variables x f and
xg are assigned the same value by T .
Combining ι and γ, we de�ne a map Φ ∶ M1 → M2 by Φ ∶= ι ∪ γ. �at is, Φ maps

segments according to ι and maps feet according to γ. We claim that Φ is an isomorphism
of multipedes. To see this, �rst observe that Φ preserves the hypergraph structure and the

ordering of segments as it extends the hypergraph isomorphism ι. Also by the de�nition of
γ, it is clear that Φ preserves the relation that associates feet with segments. Furthermore:
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• According to the segment equations of SM, γ (and hence Φ) is bijective.

• According to the shoe equation of SM, T(cM11 ) and T(cM22 ) must be equal. Hence, Φ
maps the shoe ofM1 to the shoe ofM2.

• Suppose {e , f , g} ⊆ FM1
1 is a three-element set of feet that ρ1 maps onto a hyperedge

h ∈ HM1
1 . �us,

(xe + x f + xg) + xh = (xγ(e) + xγ( f ) + xγ(g)) + xh ,

over GF2. It follows from the de�nition of the hyperedge equations of SM that

{e , f , g} ∈ Π1⇔ {γ(e), γ( f ), γ(g)} ∈ Π2,

which shows that Φ maps positive triples to positive triples and thus preserves the

positivity relation.

Together, this settles the claim.

Now suppose Φ ∶ M1 → M2 is an isomorphism of multipedes. We will show that there is an
assignment of values to the variables (xv)v∈V that satis�es SM.
Firstly, for each segment s ∈ SM11 with an associated pair of feet ρ−11 = {e , f }, let T assign

opposite values to the two feet e and f . �at is, T( f ) = 1 − T(e) and T(e) = 1 − T( f ). �is
choice of assignment can be arbitrary. Doing this for all segments de�nes T on FM1

1 . Now

for each hyperedge h ∈ Σ1 consider a positive triple {e , f , g} ∈ Π1. Assign a value to the
variable xh such that (xe + x f + xg) + xh = 1. �is choice does not depend on which positive
tuple we consider, as all the four positive triples mapped onto h are related by the condition
∥X △ Y∥ ≡ 0 (mod 2), and permuting an even number of feet of any tuple (i.e. assigning
opposite values to an even number of the three variables xe , x f and xg) always preserves the
parity of the sum xe + x f + xg in GF2.

Now all that remains is to de�ne T on FM2
2 . We do that according to the isomorphism

Φ; that is, for each f ∈ FM1
1 we set T(Φ( f )) ∶= T( f ). �is concludes the de�nition of the

assignment T . It remains to argue that this is a satisfying assignment to the system of linear
equations SM. But this should be clear from our construction of T . In particular,

• segment equations are satis�ed because T assigns opposite values to the two feet at-
tached to any segment;

• hyperedge equations are satis�ed because of the way T assigns value to each hyperedge
variable xh; and

• the shoe equation is satis�ed because T respects the isomorphism Φ.

�e preceding lemmas, along with the FOC-sentence hyperiso, now establish that there is a
�rst-order (with counting) reduction from the problem of deciding isomorphism of multi-

pedes to the problem of deciding solvability of linear systems over GF2. �e latter problem
can be de�ned in FOR2 by�eorem 4.12. Hence, we get the following result.

�eorem 5.8 (Multipede isomorphism in FOR2). �ere is a sentence φMI ∈ FOR2 such that
for all structuresM =M1∪̇M2, whereM1 andM2 are multipedes, it holds thatM ⊧ φMI if and
only ifM1 ≅M2.
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5.2 Descriptive complexity

In descriptive complexity theory, it is known that extensions of �rst-order logic with vari-

ous �xed-point operators capture di�erent complexity classes on the class of �nite ordered

structures. For instance, on ordered structures FO+TC captures non-deterministic logspace
(NL) while IFP captures PTIME. In this section we show such a natural correspondence for

�rst-order rank logics on ordered structures, by proving that FORQ captures the complexity

class LC=L and that for prime p, FORp captures the complexity class MODpL. While these
classes are perhaps not as well known as some of the more established complexity classes

(and we do give the formal de�nition of each one later), they do correspond to natural lev-

els of complexity and have been extensively studied in the literature over the past couple of

decades. In particular, MOD2L is better known under the name “parity logspace”, denoted

by ⊕L, and LC=L equals C=LH, the exact logspace counting hierarchy.
Put in the context of other known capturing statements, these results give us the following

picture of logspace descriptive complexity on ordered structures. Here, the capturing result

for FOC is from Etessami [47], where �C
0
is the class of languages that can be decided by

Boolean circuits with constant depth and polynomial size, containing only unbounded-fanin

AND gates, OR gates, and threshold gates [59]. Both the capturing results for FO+DTC
and FO+TC are from Immerman [43]. �e inclusion NL ⊆ LC=L is from [1]. As evident
from the diagram, relations between many of the logspace complexity classes are not fully

understood. In particular, it is an open problemwhether NL and⊕L are directly comparable,
although there is some evidence thatNL ⊆ ⊕L (see e.g. Allender [3]). In light of our capturing
results, it is now conceivable that this important open problem can be settled by purely logical

methods.

MODpL FORp

⋮ ⋮

⊕L FOR2

�C
0

L NL FO+TC

FOC FO+DTC LC=L FORQ

?

Figure 5.3: Descriptive complexity of logarithmic space classes. Complexity classes are typed in black,
logics in grey. Arrows between complexity classes indicate inclusion and dotted lines between logics

and complexity classes denote capturing on ordered structures.

Before we describe the actual capturing results, we �rst review some notions from both de-

scriptive and computational complexity in the next two sections. �roughout, all structures

are assumed to be �nite.

5.2.1 Encoding ordered structures as strings

For a vocabulary τ with ≤∈ τ, we call a τ-structure A an ordered structure if A interprets ≤
as a total linear order of its universe. We identify the linearly ordered universe of A with
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[0, ∥A∥ − 1] ⊂ N0. An ordered τ-structure A can be encoded as a word over Σ ∶= {0, 1} in
a canonical way as follows. �is encoding is similar to the encoding we described in §2.9.2,

except now we consider the built-in ordering of the structure.

Assume τ = {R1, . . . , Rs , c1, . . . , ct}, where the Ri are relation symbols and the ci are
constants, and let U(A) = {0, . . . , n − 1}. For each k-ary relation symbol R ∈ τ, the relation
RA is encoded by an nk-bit string enc(RA) where the j-th bit of enc(RA) is 1 if and only if
a⃗ ∈ RA for the k-tuple a⃗ for which ∑k−1

i=0 aini = j. Constants can be encoded similarly, by
viewing each constant as a unary relation containing exactly one element. Putting this all

together, we write enc(A) for the canonical encoding of A de�ned by

enc(A) ∶= 0n1 ⋅ enc(RA
1 )⋯enc(RA

s ) ⋅ enc(cA1 ) ⋯ enc(cAt ),

where a ⋅ b denotes the concatenation of strings a and b. For further details, see e.g. Ebbing-
haus andFlum [23] or Libkin [52]. It is not hard to see that there is a deterministic logarithmic-

space algorithm, depending only on τ, that decides whether a given string Σ∗ is a valid en-
coding of a τ-structure.
IfK is a class of ordered τ-structures, then we say that a Turing machineM decidesK if

for any ordered τ-structure A,

M(enc(A))
⎧⎪⎪⎨⎪⎪⎩

accepts if A ∈ K,
rejects if A ∉ K.

Here we assume that the input alphabet ofM contains Σ. Since it can be decided in logarith-
mic space whether a given string in Σ∗ is a valid encoding of a τ-structure,M can be turned
into a machine that decides {enc(A) ∣ A ∈ K} ⊆ {0, 1}∗, assuming M is not restricted to

use less than logarithmic amount of work space. For a complexity class C we write K ∈ C to
mean {enc(A) ∣ A ∈ K} ∈ C.

De�nition 5.9 (Capturing complexity on ordered structures). Given a complexity class C,
we say that a logic L captures C on ordered structures if for any vocabulary τ with ≤∈ τ and
any class K of ordered τ-structures, K ∈ C if and only if there is a sentence φK of L[τ] that
de�nesK. ∎

5.2.2 Logspace-bounded Turing machines

All the Turingmachines we consider in this and the following sections are non-deterministic

logspace machines that use Σ as both their input and work tape alphabet. LetM be one such
machine, with space bound d ⋅ log n, where d ∈ N. Given a string x ∈ Σ∗, we write GM ,x for
the con�guration graph ofM on input x. Recall thatGM ,x is the directed graphwhose vertices
are all possible con�gurations ofM with x on the input tape and thework tape having atmost
d ⋅ log(∣x∣) symbols, and there is an edge from con�guration c1 to con�guration c2 if and only
if the machineM can make the transition from c1 to c2 in one step. Since each con�guration
can be described using at most e ⋅ log ∣x∣ bits, where e ≥ d is a constant depending only
on d and M, it can be seen that the size of the graph GM ,x (i.e. the number of possible
con�gurations of M on input x) is bounded above by pM(∣x∣), where pM is a polynomial
depending only onM and d.
Also note that GM ,x can generally be assumed to be free of cycles; if it is not, then we

can consider instead the con�guration graph of the Turing machineM′ obtained fromM by
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keeping a time mark on the work tape that is increased by 1 at every transition. �e maxi-

mum time mark required is simply the number of possible con�gurations of M on input x,
and since this number is at most pM(∣x∣), it is clear that the machine M′ also requires only
logarithmic workspace.

Finally, we can also assume, without loss of generality, that M has only one accepting

con�guration; that is, a con�guration in the accepting state of M. Otherwise, if M on input
x has more than one accepting con�guration, then we consider the machine M′ obtained
from M by (a) adding a new state s′acc, (b) making s′acc the accepting state of M′ and (c)
modifying the transition table of M so that whenever the machine reaches state sacc, it will
clear the work tape, move the work tape and input tape heads to the initial position and go to

the new accepting state s′acc. �is ensures that the corresponding con�guration is the unique
accept con�guration ofM′ on input x.

Write σgraph ∶= {E} for the signature of graphs, where E is a binary relation symbol. Ebbing-
haus and Flum [23] show that for each vocabulary τ containing the binary relation symbol ≤,
there is an FO+DTC interpretation Φ of σgraph in τ for which it holds that for any τ-structure
A, Φ(A) is the con�guration graph ofM on input enc(A). Here there is a �xed encoding of
the con�gurations of M on input enc(A) by e-tuples of elements from A, where e ≥ d is a
constant depending only on d and M, as above. A close look at the proof of this statement
illustrates that a similar interpretation can also be de�ned using formulae of FOC without

any recursion, as we state more formally below.

Lemma 5.10 (Con�guration graph in FOC). Let M be a non-deterministic logarithmic-space
Turing machine with q states and a space bound d ⋅ log n, where d ∈ N. �en there is a constant
e, depending only on M and d, and FOC-formulae χstart(x⃗), χaccept(x⃗), and χsucc(x⃗ , y⃗) such
that for all ordered τ-structures A with ∥A∥ > max{d ⋅ log∥A∥, q} and a⃗ ∈ U(A)e ,

• (A, a⃗) ⊧ χstart(x⃗) if and only if a⃗ encodes the start con�guration of M on input enc(A);

• (A, a⃗) ⊧ χaccept(x⃗) if and only if a⃗ encodes the accepting con�guration of M on input
enc(A); and

• A ⊧ χsucc(a⃗, b⃗) if and only if a⃗ and b⃗ encode valid con�gurations of M on input enc(A)
and b⃗ is a successor con�guration of a⃗.

Here, x⃗ and y⃗ are assumed to be e-tuples of distinct variables.

Sketch proof. �e formulae χstart(x⃗) and χaccept(x⃗) can be expressed in �rst-order logic,
by Lemma 7.3.7 in [23]. �at same lemma shows that the formula χsucc(x⃗ , y⃗) can be ex-
pressed in FO+DTC over vocabulary τ. A close look at the proof of that lemma shows
that the dtc-operator is required only for de�ning formulae φ+(x , y, z), φ⋅(x , y, z), φ2(x , y)
and φlog(universe)(x) (see Lemma 7.3.11 in [23]), for which it holds that for any ordered τ-
structure A with U(A) = {0, . . . , n − 1} and any a, b, c ∈ U(A),

(A, a, b, c) ⊧ φ+⇔ a + b = c,
(A, a, b, c) ⊧ φ⋅⇔ a ⋅ b = c,
(A, a, b) ⊧ φ2⇔ 2

a = b, and
(A, a) ⊧ φlog(universe)⇔ a = log∥A∥.
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Clearly, the formulae φ+(x , y, z) and φ⋅(x , y, z) can be de�ned in FOC by mapping the el-
ements of A into the number sort. From the proof of �eorem 6.12 in [52], the formula
φ2(x , y) is expressible over ordered structures in FO(+, ⋅), �rst-order logic with addition
and multiplication over the domain elements. Finally, φlog(universe)(x) can be expressed
with a simple application of φ2(x , y), as in the proof of Lemma 7.3.11 in [23].

For some of the complexity classes we de�ne later, we need to consider Turing machines

with access to an oracle. Loosely speaking, an oracle machine is a Turing machine which

may pose questions (or queries) to a function f ∶ Σ∗ → Σ∗, called the oracle. Apart from an
input tape and a work tape, an oracle machine has an additional oracle tape which it uses to
communicate with the oracle. To do that, the machine writes a query string x to the oracle
tape and then tells the oracle to execute. In a single step, the oracle computes its function,

erases the input, and writes its output f (x) to the oracle tape. We write M f to denote the
oracle Turing machine M with access to the oracle f . Frequently, we consider oracles that
are the characteristic function χA of some language A; in that case we write MA to denote
the machineM with access to the oracle χA.
To simulate oracle access for logspace-bounded machines, we follow the Ruzzo-Simon-

Tompa oracle access mechanism described in [2] and [1] (see also Ruzzo et al. [61] for the

original de�nitions). According to this mechanism, a logspace-bounded machine M is re-

quired to write its queries on the oracle tape in a deterministic manner. �e number of

possible con�gurations before the machine starts writing on the oracle tape is at most poly-

nomial. It follows that for any given input string x, the number of queries M can submit to
its oracle is at most polynomial in the size of x. Moreover, all these queries can be written
in sequence on the oracle tape even before the machine starts reading its input (knowing

only the size of the input). By pre-computing all oracle queries in this way, it can be ensured

thatM does not have to query its oracle for the remainder of the computation. �us, in this
context, an oracle-access machineM can be seen as an ordinary logspace-bounded machine
with an additional polynomial-size “advise string” given as input.

Finally, we write ∥M(x)∥ to denote the number of accepting computation paths of a non-
deterministic machine M with input string x. �e same notation will be used for machines
with oracle access.

5.2.3 FORp capturesMODpL on ordered structures

In [11], Buntrock et al. investigated the logspace analogues of polynomial-time counting

classes. In particular, they showed that many of the standard problems of linear algebra are

complete for the logspace modulo-counting classes MODkL, which are de�ned as follows.

De�nition 5.11 (Complexity class MODkL). Let k ∈ N. A language L ⊆ Σ∗ belongs to
MODkL if there is a non-deterministic logspace machine M, such that for every x ∈ Σ∗:
x ∈ L if and only if ∥M(x)∥ ≢ 0 mod k. ∎

Remark. Note that MOD2L is better known under the name “parity logspace”, usually de-
noted by ⊕L.

�eorem 5.12. Let p be prime. �en FORp capturesMODpL on ordered structures.
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�e proof of this theorem consists of two parts. Firstly, we show that for any sentence φ ∈
FORp, the class of �nite ordered models of φ can be decided in MODpL. More speci�-
cally, we show that for any φ there is a non-deterministic logspace machine Mφ such that
for any structure A, ∥Mφ(enc(A))∥ ≢ 0 mod p if and only if A ⊧ φ. Secondly, given a
non-deterministic logspace machineM deciding a class of �nite structuresK ∈MODpL, we
construct a sentence φM that holds in a structure A if and only if A ∈ K (equivalently, if and
only if ∥M(enc(A))∥ ≢ 0 mod p).
For the �rst part, assume that τ is a vocabulary with ≤∈ τ, and that φ is a FORp[τ]-

sentence. In order to dealwith rank operators occurring inφ, we need two results onMODpL-
complexity. �e �rst one says that the rank of a matrix over GFp can be veri�ed in MODpL.

Lemma 5.13 (Buntrock et al. [11]). Let p be prime. �en the problem which takes as input an
integer r ∈ N0 and a matrix A ∈ GFm×n

p and decides whether rankA = r is inMODpL.

�e second result states that non-deterministic logspace machines deciding languages in

MODpL making oracle queries to a MODpL problem can be simulated in MODpL without
oracle queries.

Lemma 5.14 (Hertrampf et al. [39]). Let p be prime. �enMODpL
MODpL =MODpL.

It is le� to show that the language

Lφ ∶= {enc(A) ∣ A ∈ �n[τ] and A ⊧ φ}

is in MODpL by means of a non-deterministic logspace machineMφ. �e proof is by induc-
tion on the structure of FORp number terms and formulae. �at is, we show that

• for each FORp-formula θ(x⃗) of vocabulary τ with k free variables, the language

Lθ(x⃗) ∶= {enc(A, a⃗) ∣ A ∈ �n[τ], a⃗ ∈ U(A)k and (A, a⃗) ⊧ θ(x⃗)}

is in MODpL by means of a non-deterministic logspace machine Mθ(x⃗), where we

write enc(A, a⃗) for the string obtained by extending enc(A) with an ∥A∥k-bit string
representing the tuple of elements a⃗; and

• for any number term η(x⃗) of FORp[τ], there is a deterministic logspace machine
Mη(x⃗), with access to MODpL-oracles, that when given as input a string enc(A, a⃗),
accepts and halts with the integer η(x⃗)(A,a⃗) on the work tape.

Since existential quanti�ers can be expressed using rank operators, it is enough to show the

following cases.

• Atomic formulae Rx⃗ and x = y can be decided deterministically by lookup in enc(A)
on the input tape. Similarly for formulae involving constant symbols in τ.

• Computation of the number constants 0AN and 1
A
N can be carried out in constant time

by writing the integers zero or one on the work tape, respectively.

• Addition andmultiplication of number terms is carried out deterministically in logspace.
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• Given number terms s and t, formulae θ ≡ s = t and θ ≡ s ≤ t are decided determinis-
tically from the values computed for sA and tA by machinesMs andMt , respectively.

• Now consider a formula θ. If θ ≡ ¬ψ, thenMθ makes an oracle query to Lψ and accepts
if and only if the oracle rejects the input. If θ ≡ ψ1 ∧ψ2, thenMθ makes oracle queries
to Lψ1 and Lψ2 and accepts if both queries succeed, and rejects otherwise. In both cases
Mθ is a deterministic logspace-bounded machine with access to MODpL-oracles. As
L ⊆MODpL for any prime p, the language Lθ ∈ LMODpL decided byMθ is in MODpL,
by Lemma 5.14.

• Finally, consider a number term η ≡ rkp(x⃗ , y⃗).γ, with k = min{∥x⃗∥, ∥ y⃗∥}. A ma-
chine computing η proceeds by checking for every integer r with 0 ≤ r ≤ ∥A∥k if
rkp(x⃗ , y⃗).γ = r by making oracle queries to the MODpL-language from Lemma 5.13.

Instead of querying its input tape for matrix entries γ(a⃗, b⃗),Mη computes γ(a⃗, b⃗) de-
terministically if γ is a term or makes oracle queries to Lγ with input enc(A, a⃗b⃗) if γ
is a formula. Since r ≤ ∥A∥k , all possible rank values can be written down in space
logarithmic in the size of A. It follows that at most polynomially many oracle queries
have to be made by Mη. Once all these oracle queries have been processed, the deter-
ministic oracle machineMη goes through the list to �nd the right rank value and then
writes it down on its work tape, as required.

For any FORp-sentence φ there is therefore, by repeatedly applying Lemma 5.14, a non-
deterministic logspacemachineMφ such that for any structureA, ∥Mφ(enc(A))∥ ≢ 0 mod p
if and only if A ⊧ φ. Hence, Lφ is in MODpL.

For the other part, consider a non-deterministic machineM with space bound d ⋅ log n that
decides a class of τ-structuresK ∈MODpL. As noted before, we can assume thatM has only
one accepting con�guration. We construct a formula φM that de�nes K. In the following,
we restrict ourselves to structures A so that ∥A∥ > N ∶= max{d ⋅ log∥A∥, q} where q is the
number of states of M. For those structures B whose size is less than N we can write down
a �xed formula which checks whether enc(B) ∈ K by comparing B with a �nite number of
small structures that belong toK.
Given a τ-structureA, writeGM ,A for the con�guration graph ofM on input enc(A). Let

e > d be a constant, depending only onM, such that all con�gurations ofMmay be encoded
by e-tuples of elements from A, as discussed earlier. If s and t denote the unique start and
accept con�gurations of M on input enc(A), respectively, then it can be seen that A ∈ K if
and only if the number of paths from s to t in GM ,A is ≢ 0 mod p. By Lemma 5.10, there is a
formula χsucc(x⃗ , y⃗) of FOC (and hence of FORp) which de�nes over any τ-structure A the
con�guration graph GM ,A ofM on input enc(A), where x⃗ and y⃗ are e-tuples of variables. In
other words, χsucc(x⃗ , y⃗)A de�nes the adjacency matrix A of GM ,A. Let I denote the identity
matrix of the same dimension as A. �en I − A is de�nable in FORp by a term η(x⃗ , y⃗), and
the term

η∗(x⃗ , y⃗) ≡ (¬χaccept(x⃗) ∧ ¬χstart( y⃗)) ⋅ η(x⃗ , y⃗)
de�nes I − Awith row t and column s set to 0. Here, χaccept(x⃗) and χstart( y⃗) are obtained
from Lemma 5.10. �e formula ε(x⃗ , y⃗) ≡ (x⃗ = y⃗) ∧¬χstart(x⃗) de�nes the identity matrix of
the same dimension as Awith row s set to 0. Let

φM ≡ rkp(x⃗ , y⃗).ε = rkp(x⃗ , y⃗).η∗.
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�e following completes the proof of �eorem 5.12.

Lemma 5.15. For any ordered τ-structure A with ∥A∥ > max{d ⋅ log∥A∥, q}, A ⊧ φM if and
only if A ∈ K.

Proof. AsGM ,A is cycle-free andhas ne vertices, there is no path of length larger than ne =∶ m,
hence Am = 0. Here, e is the number of variables needed to encode con�gurations of M
over A, as above. �us, I − A is non-singular over GFp, with the inverse explicitly given by
(I − A)−1 ∶= I + A+ A2 + . . . + Am−1, where all arithmetic is over GFp. To see this, note that

(I − A)(I + A+ A2 + . . . + Am−1)
=(I + A+ A2 + . . . + Am−1) − (A+ A2 + . . . + Am−1 + Am)
=(I + A+ A2 + . . . + Am−1) − (A+ A2 + . . . + Am−1 + 0)
=I,

as required. Notice that for k ∈ N0, the (i , j)-th entry of Ak equals the number of paths
modulo p of length k from i to j in GM ,A. �us, (I − A)−1 is the matrix of the total numbers
of paths modulo p. Recall that s and t denote the start and accept con�guration, respectively.
�en A ∈ K if and only if (I − A)−1(s, t) ≠ 0 over GFp.
It can be shown [42] that for any invertible matrix B, the entries b−1i j of its inverse B−1 are

given by

b−1i j = (−1)i+ j detB ji/detB,
where B ji is B with the j-th row and the i-th column deleted (this expression is known as the
adjugate rule). To check if (I − A)−1(s, t) ≠ 0, it is therefore enough to test if (I − A)ts has
full rank, which is exactly what φM does.

5.2.4 FORQ captures LC=L on ordered structures

Allender and Ogihara [2] introduced the complexity class C=L (pronounced “exact logspace
counting”) to characterise the complexity of the class of singular matrices. �e following is

one of several equivalent ways of de�ning this class.

De�nition 5.16 (Complexity class C=L). A language L ⊆ Σ∗ belongs to C=L if there is a non-
deterministic logspace machine M, such that for every x ∈ Σ∗: x ∈ L if and only if M on

input x has exactly the same number of accepting and rejecting paths. ∎

Allender and Ogihara [2] also consider LC=L, the class of languages decided by a determin-

istic logspace-bounded machine with access to an C=L oracle. In this section we prove the
following theorem.

�eorem 5.17. FORQ captures LC=L on ordered structures.

�e proof of this theorem is quite similar to the proof of �eorem 5.12. First we recall a

couple of results on C=L computation. �e �rst result concerns the exact logspace counting
hierarchyC=LH, which is de�ned as follows. De�ne C=LH1 to be C=L and let C=LHi+1 be the
class of languages L for which there is a logspace-bounded non-deterministic oracle Turing
machine M and a language A ∈ C=LHi such that for any string x ∈ Σ∗: x ∈ L if and only if
MA on input x has the same number of accepting and rejecting computation paths. Finally,
set C=LH ∶= ⋃i C=LHi . Allender and Ogihara [2] show that the exact counting logspace
hierarchy collapses to LC=L.
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Lemma 5.18 (Allender and Ogihara [2]). C=LC=L = LC=L. Hence C=LH = LC=L.

�e second result that we need says that the rank of matrices with entries from the �eld of

rational numbers can be veri�ed in C=L.

Lemma 5.19 (Allender and Ogihara [2]). �ere is a non-deterministic logspace machine Mrk
for which it holds that when given as input an integer r ∈ N0 and a matrix A ∈ Qm×n, Mrk has
exactly the same number of accepting and rejecting paths if and only if rankA = r.

We can now show that formulae of FORQ can be evaluated in L
C=L on ordered structures.

Lemma 5.20 (FORQ ⊆ LC=L). Let τ be a vocabulary containing the symbol ≤. For every sen-
tence φ ∈ FORQ of vocabulary τ the class of �nite ordered models of φ can be decided in LC=L.

Proof. Assume τ is a vocabulary with ≤∈ τ and let φ be a FORQ-sentence of vocabulary τ. We
show that there is a deterministic logspace-bounded machine M and a language B ∈ C=L,
such that for every ordered τ-structure A: A ⊧ φ if and only if MB accepts enc(A). As
discussed in �eorem 5.12, it can be shown by induction that all logical and arithmetical

operations other than application of rank operators can be evaluated in LC=L. All that remains

is to show that rank operators of the form rkQ(x⃗ , y⃗).(φn , φd ,ψ, t) can be evaluated in LC=L.
But by Lemma 5.19, and an argument similar to the one given in the proof of �eorem 5.12,

this should be clear.

We de�ne Path-Difference to be the function problem that takes as input a directed acyclic

graph G = (V , E) and vertices s1, t1, s2, t2 ∈ V and computes the value of #PathG(s1, t1) −
#PathG(s2, t2), where #PathG(u, v) is the number of paths from vertex u ∈ V to vertex v ∈ V .
Toda [63] shows that the problem Path-Difference can be logspace many-to-one reduced

to the problem of computing the determinant of an (0, 1)-integer matrix (although his state-
ment of the path di�erence problem is slightly more generic). �e following lemma shows

that this reduction can in fact be turned into a �rst-order reduction.

Lemma 5.21. Path-Difference ≤fo Zero-One-Det.

Proof. Let G = (V , E) be a directed acyclic graph and consider vertices s1, t1, s2, t2 ∈ V .
Let G1 = (V1, E1) and G2 = (V2, E2) be two disjoint copies of G, and write x1, y1 ∈ V1 and
x2, y2 ∈ V2 to denote the vertices corresponding to s1, t1 and s2, t2 in each of the two copies
of G, respectively. We construct a graph H from G1 and G2 as follows.

• �e vertex set of H contains all vertices in V1 and V2. In addition, for each edge e =
(u, v) in G1 or G2, we add a new vertex we to H. Finally, we add two special vertices a
and b.

• For each edge e = (u, v) inG1 orG2, we add the two directed edges (u,we) and (we , v)

• We add the following edges to the two special vertices a and b:

– a → x1, y1 → b, b → a, and
– a → x2, y2 → a.

• Finally, we add self-loops to all vertices except a.

Write B for the adjacency matrix of H. Clearly, H (and hence B) is �rst-order de�nable over
G.
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Our claim is now that the number #PathG(s1, t1) − #PathG(s2, t2) is equal to the determi-
nant of the matrix B over Z. For completeness, we recall the proof of this claim from [63].
Consider an n × n matrix A = (ai j). �e determinant of A is given by

det(A) ∶= ∑
σ∈Sym(n)

sgn(σ)∏
i
aiσ(i),

where the sum is taken over the symmetric group Sym(n) of all permutations of [n] ∶=
{1, . . . , n}. Here sgn(σ) denotes the sign of the permutation σ , de�ned by sgn(σ) ∶= (−1)m
wherem is the number of transpositions of pairs of elements that must be composed to build
up the permutation σ . In particular, if σ ∈ Sym(n) is a cyclic permutation then sgn(σ) = 1
if n is odd and sgn(σ) = −1 otherwise. In general, when σ is not necessarily cyclic, we can
decompose σ into a product of cyclic permutations. It can be seen that this cycle decompo-
sition of σ , when interpreted as a graph on vertices [n], induces a partition of the vertex set
into disjoint cycles.

�ematrixA can be seen as a weighted directed graphGA on n vertices, where the weight
of an edge from i to j is ai j. Recall that a cycle cover ofGA is a set of cycles which are subgraphs
of GA and which collectively contain all vertices of GA. Here we consider only cycle covers
where the cycles are disjoint. Clearly, each cycle cover of A corresponds to a permutation
σ of [n], where the partition of vertices into cycles corresponds to the cycle decomposition
of σ . It is noted by Toda [63] that each cycle cover of A corresponds to a permutation σ
whose additive term in det(A) is non-zero (clearly, since each vertex in the cycle cover must
have an edge to at least one other vertex in the cycle). Similarly, it can be shown that every

permutation in Sym(n) whose additive term in det(A) is non-zero corresponds to a cycle
cover of A.

Now consider the graphH constructed above, withm×m adjacencymatrix B = (bi j), where
m > n is the number of vertices in H. From the construction of H it can be seen that each
cycle cover of H consists of (a) one large cycle that includes the special vertex a and (b)
a number of self-loops, one for each vertex not on the big cycle. It can be seen from the

construction of H that the big cycle can take only one of two forms:

(C1) either it contains the edge a → x1, in which case it must include a path from x1 to y1
and come back to a via the path y1 → b → a; or

(C2) it contains the edge a → x2, in which case it must include a path from x2 to y2 and
come back to a via the path y2 → a.

Hence, we see that the number of cycle covers containing (C1) is the same as the number of

distinct paths in G1 from x1 to y1, and likewise that the number of cycle covers containing
(C2) is the same as the number of distinct paths in G2 from x2 to y2. It is clear that any path
from either x1 to y1 or from x2 to y2 inHmust be of even length, where by length of a path we
mean the number of edges it contains. �is is due to the intermediate vertices we , inserted
in between two endpoints of an edge in G1 or G2. Consequently, it can be seen that the two
big cycles (C1) and (C2) described above must have odd and even length, respectively.

Now consider all the permutations in Sym(m)whose additive term in the expression for
det(B) is non-zero. Divide these permutations into two sets: P1, the set of all permutations
whose corresponding cycle cover on H contains the cycle (C1), and P2, the set of all permu-
tations whose corresponding cycle cover on H contains the cycle (C2). By the above these
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two sets are disjoint. Also, we see that sgn(σ) = 1 for all σ ∈ P1 and sgn(σ) = −1 for all σ ∈ P2.
Now we can write

det(B) = ∑
σ∈Sym(m)

sgn(σ)∏
i
biσ(i)

= (∑
σ∈P1

∏
i
biσ(i)) − (∑

σ∈P2
∏
i
biσ(i))

= ∥P1∥ − ∥P2∥,

where the last equality comes from the fact that B is a (0, 1)-matrix. It follows that det(B) =
#PathG1(x1, y1) − #PathG2(x2, y2). Since #PathG i(xi , yi) = #PathG(si , ti) for i ∈ {1, 2}, the
lemma now follows.

Lemma 5.22 (C=L ⊆ FORQ). Let K ∈ C=L be a class of �nite τ-structures decided by a non-
deterministic logspace-bounded machine M. �en there is a sentence φM ∈ FORQ[τ] such that
for any τ-structure A: A ⊧ φM if and only if A ∈ K.

Proof. Consider a non-deterministic logspace-bounded machine M that decides a class of

τ-structuresK ∈ C=L. �at is, for any τ-structureA,A ∈ K if and only ifM on input enc(A)
has the same number of accepting and rejecting computation paths. We show that there is a

formula of FORQ[τ] that de�nesK.
As in the proof of �eorem 5.12, let χsucc(x⃗ , y⃗) be the formula that de�nes over a given

τ-structure A the adjacency matrix of the con�guration graph G ∶= GM ,A of M on input

enc(A). We can assume, as before, that M on input enc(A) has only one accepting con�g-
uration and one rejecting con�guration. Write sinit,tacc and trej for the start con�guration,
accepting con�guration and rejecting con�guration ofG, respectively. By the above, we know
that A ∈ K if and only if the number D ∶= #PathG(sinit, tacc) − #PathG(sinit, trej) is zero.
By Lemma 5.21, there is a �rst-order reduction from the problem of deciding if D is zero

to the problem of determining whether a square integer matrix is singular over Q (that is,
has determinant zero). �is, in turn, can be �rst-order reduced to the problem of checking

whether a square matrix has full rank over Q. Since the logic FORQ is closed under �rst-
order reductions, the statement of the lemma now follows.

Proof of �eorem 5.17. �e proof of this theorem now follows directly from Lemma 5.20 and
by combining Lemma 5.22 with the fact that queries in L can be de�ned in �rst-order logic

on ordered structures.



Chapter 6

Ehrenfeucht-Fraïssé games for rank
logics

In order to analyse the expressive power of rank logics over �nite structures, it is important

to develop methods for proving non-de�nability. In this context, the restriction to �nite

structures means that many of the classical tools of model theory, such as the compactness

theorem, are not available. Instead, we consider extensions of pebble games—variations of

Ehrenfeucht-Fraïssé games for �rst-order logic—which have assumed a central role in the

study of both in�nitary and �xed-point logics.

A pebble game is a two-player model-comparison game where each player has a �nite
number of tokens (‘pebbles’) for placing on the game board. Intuitively, the �nite collec-

tion of tokens each player is equipped with corresponds with the �nite supply of variables

that can be used to construct sentences of the corresponding logic. Pebble games were es-

sentially described by Barwise [5] though versions were later independently presented by

Immerman [44] and Poizat [60]. �e k-pebble game can be shown to characterise de�n-
ability in k-variable in�nitary logic (Lk). �is correspondence gives a purely combinatorial
gamemethod for proving inexpressibility results forLk in general and IFP in particular. Im-
merman and Lander [46] and Hella [37] later introduced separate versions of the k-pebble
game for analysing the expressiveness of k-variable in�nitary counting logic (Ck) over �nite
models.

In this chapter we give a game characterisation of �nite-variable in�nitary logic with

operators for de�ning matrix rank (Rk
p;m). �is gives us a game-based method for proving

lower bounds (inexpressibility results) for FOR and IFPR. �e game protocol that we intro-

duce is based on partitioning the game board into a number of disjoint regions, according

to some linear-algebraic criteria, which then limits the possible placement of pebbles on the

board. �is method of partitioning the game board turns out to be quite �exible and can

be used to give a game description of �nite-variable in�nitary logic equipped with any set of
generalised quanti�ers. To give some examples of this approach, wewill conclude the chapter

by describing new partition-based games suitable for Lk and Ck .

�e remainder of this chapter is divided into threemain sections. In §6.1 we give an overview

of standard pebble games and some of their variations (counting and bijection games) and

describe their relationship to �xed-point and in�nitary logics with and without counting.

In §6.2 we introduce a new model-comparison game, based on set partitions, that charac-

95
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terises expressivity in logics that can de�ne matrix rank. Finally, in §6.3 we indicate how the

partition-based design can be used to obtain games that characterise de�nability in Lk(Q)
for any set of generalised quanti�ers Q. To illustrate this idea, we �nish our discussion by
showing how new games for in�nitary logic (with and without counting) can be obtained by

putting certain restrictions on the protocol of this general partition game.

6.1 Pebble games for Lk and Ck

Combinatorial games inmodel theory invariably involve comparing a pair of game positions

over one or more structures. In order to formally compare game positions, we need the

following de�nition.

De�nition 6.1 (Partial isomorphism). Let A and B be structures over the same vocabulary
τ. A partial map f ∶ U(A) → U(B) is a partial isomorphism from A to B if

• f is injective;

• for every relation symbol R ∈ τ of arity k and all a1, . . . , ak ∈ U(A):

(a1, . . . , ak) ∈ RA⇔ ( f (a1), . . . , f (ak)) ∈ RB
;

• for every constant symbol c ∈ τ: cA ∈ dom( f ) and f (cA) = cB,

where we write dom( f ) ⊆ U(A) for the domain of f . ∎

De�nability in k-variable in�nitary logic is elegantly characterised in terms of two-player
games based on a game style originally developed by Ehrenfeucht and Fraïssé [27, 24]. �ese

games were essentially given by Barwise [5] though versions were also independently pre-

sented by Immerman [44] and Poizat [60]. �e game board of the k-pebble game consists of
two structures A and B over the same vocabulary and k pebbles for each of the two struc-
tures, labelled 1, . . . , k. �e game has two players, Spoiler and Duplicator. At each round of
the game, the following takes place.

1. Spoiler picks up a pebble in one of the structures (either an unused pebble or one that

is already on the board) and places it on an element of the corresponding structure.

For instance he1 might take the pebble labelled by i in B and place it on an element of
B.

2. Duplicator must respond by placing the matching pebble in the opposite structure. In

the above example, she must place the pebble labelled by i on an element of A.

Assume at the end of the round that r pebbles have been placed and let {(ai , bi) ∣ 1 ≤ i ≤
r} ⊆ U(A) × U(B) denote the r pairs of pebbled elements, such that for each i the label of
the pebble on element ai is the same as the label of the pebble on element bi . If the partial
map f ∶ U(A) → U(B) given by

f ∶= {(ai , bi) ∣ 1 ≤ i ≤ r} ∪ {(cA, cB) ∣ c ∈ τ a constant}
1
By convention, Spoiler is male and Duplicator female.
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is not a partial isomorphism, then Spoiler has won the game; otherwise it can continue for

another round. We say that Duplicator has a winning strategy in the k-pebble game if she
can play the game forever, maintaining a partial isomorphism at the end of each round.

We also consider the situation where the game starts with some of the pebbles initially

placed on the game board. Formally, we refer to a placement of pebbles over one of the

structures as a position. If a⃗ and b⃗ are r-tuples of elements fromU(A) andU(B) respectively,
r ≤ k, then the game starting with positions (A, a⃗) and (B, b⃗) is played as above, except that
pebbles 1, . . . , r in A are initially placed on the elements a1, . . . , ar of a⃗ and pebbles 1, . . . , r
in B are initially placed on the elements b1, . . . , br of b⃗. We will focus on this variant of the
game in the following, with the understanding that by taking r = 0 we recover the situation
where all the pebbles are initially o� the game board. �e result that links the k-pebble game
with de�nability in Lk is the following.

�eorem 6.2. Duplicator has a winning strategy in the k-pebble game starting with positions
(A, a⃗) and (B, b⃗) if and only if (A, a⃗) ≡Lk (B, b⃗).

One direction of the above is easy to show. �at is, given a formula φ with k variables that
distinguishes the pair (A, a⃗), (B, b⃗), it is straightforward to construct a �nite-roundwinning
strategy for Spoiler in the k-pebble game. �is shows that the equivalence de�ned by the
game is no coarser than that de�ned by the logic. �e other direction, which would show

that the equivalence is also no �ner, requires a more careful argument; for details, see e.g.

Ebbinghaus and Flum [23].

While the k-pebble game gives a complete characterisation of the in�nitary logic Lk , it also
proves useful for analysing the expressive power of �xed-point logic. �is is illustrated by

�eorem 2.13, which states that any sentence of IFP is equivalent to one of Lω. In particular,
for each sentence φ of IFP there is a k such that the models of φ are invariant under the
equivalence relation ≡Lk

. Hence we obtain the following game-based method for proving

non-de�nability of queries in IFP:

To show that a property P of �nite structures is not de�nable in IFP, it su�ces
to show that for each k < ω there is a pair of structures Ak and Bk for which it
holds that

1. Ak has property P but Bk does not; and

2. Duplicator has a winning strategy in the k-pebble game on Ak and Bk . ∎

We now turn our attention to in�nitary logic with counting quanti�ers. �e relations ≡Ck

were �rst given a game characterisation by Immerman and Lander [46]. �is is a pebble

game as before, played on a pair of structures A and B, each with k pebbles labelled 1, . . . , k.
In each round of the k-pebble cardinality game the following takes place:

1. Spoiler chooses a pebble label i ∈ [k] and picks a subset of the universe of one of the
two structures (say X ⊆ U(B)).

2. Duplicator must respond by choosing a subset of the universe of the other structure

(say Y ⊆ U(A)) of the same cardinality.
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3. Spoiler then places the pebble with label i on an element of Y and Duplicator must
respond by placing the matching pebble in the opposite structure on an element of X.

�is completes one round in the game. If, at any stage, the partial map from A to B de�ned
by the pebbled positions (plus constants) is not a partial isomorphism, then Spoiler has won

the game. Otherwise it can continue for another round. We say that Duplicator has a win-

ning strategy in the game on A and B if she can ensure that it can be played forever. We
also consider the case when the game starts with some of the pebbles initially placed on ele-

ments of the two structures, just like before. Immerman and Lander [46] prove the following

equivalence.

�eorem6.3. Duplicator has a winning strategy in the k-pebble cardinality game starting with
positions (A, a⃗) and (B, b⃗) if and only if (A, a⃗) ≡Ck (B, b⃗).

An alternative game characterisation of the equivalence ≡Ck was given by Hella [37], who
describes what we call a k-pebble bijection game. As before, the game is played on structures
A and B, each with k pebbles labelled 1, . . . , k, by Spoiler and Duplicator. If ∥A∥ ≠ ∥B∥,
Spoiler wins the game immediately. Otherwise, each round of the game proceeds as follows:

1. Spoiler picks up a pebble from A and the matching pebble from B.

2. Duplicator has to respond by choosing a bijection h ∶ U(A) → U(B).

3. Spoiler then places the pebble chosen from A on some element a ∈ U(A) and places
the matching pebble from B on h(a).

�is completes one round in the game. If, a�er this round, the partial map from A to B
de�ned by the pebbled positions (plus constants) is not a partial isomorphism, then Spoiler

has won the game. Otherwise it can continue for another round.

Observe that in any winning strategy for Duplicator, it is implicit that at every round in

the game, the bijection h ∶ U(A) → U(B) has to respect the partial map de�ned by the
currently pebbled elements excluding the two pebbles that were just picked up by Spoiler.
�at is, suppose at some round in the game that the tuples a⃗ and b⃗ describe the current
pebble positions over A and B, respectively. �en the mapping h given by Duplicator in
response to Spoiler choosing pebbles with label i must satisfy h(a j) = b j for all j ≠ i. To see
this, suppose instead that there is some j ∈ [k], j ≠ i, such that h(a j) ≠ b j. �en Spoiler
can immediately win the game in response to this choice of bijection, by placing the pebble

labelled i on the element a j and the matching pebble in B on h(a j). �e resulting game
positions will have ai = a j but bi ≠ b j. Hence, the mapping A → B de�ned by the pebbled
elements is not a partial isomorphism, as it violates equality.

At �rst glance, compared to the Immerman-Lander cardinality game, the bijection game

appears to be weighted in favour of Spoiler, as Duplicator has to come up with a response to

every subset that Spoiler might possibly choose. However, as Hella shows, Duplicator still

has a winning strategy as long as A and B are Ck-equivalent. �us the game has the same
discriminating power as the Immerman-Lander game. However, it is o�en easier to express

winning strategies in Hella’s game, which is useful when presenting non-trivial game proofs.
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6.2 Pebble game forRk
p;m

In order to delimit the expressive power of rank logics, we would like to have a character-

isation of the logics in terms of suitable pebble games. One way to de�ne a pebble game

that characterises equivalence in ≡Rk
p;m is to extend the idea behind the Immerman-Lander

counting game. For instance, for the case of quanti�ers rk
≥l
2 of arity two, one could de�ne

a game played between Spoiler and Duplicator using k pairs of pebbles as follows. At each
round, Spoiler chooses two pebble labels i and j. He then picks up a set of pairs of elements
from the universe of one of the structures (say Spoiler chooses X ⊆ U(B) ×U(B)) and Du-
plicator must respond with a similar set from the other structure (say Y ⊆ U(A) × U(A))
such that the (0, 1)-matrices induced by these sets have the same rank overGF2. Spoiler then
places the two pebbles labelled i and j inA on an element of Y and Duplicator must respond
by placing the matching pebbles in B on an element of X. It is possible to show that if Dupli-
cator has a winning strategy in this game, then the two structures cannot be distinguished by

any formula ofRk
2;m of arity at most two. But, for a converse, it seems that one has to restrict

Spoiler to play on de�nable sets, which seems a rather unsatisfactory solution.
Another possibility to consider is whether the Hella bijection games can be modi�ed,

perhaps by replacing bijections with invertible linear maps. �is seems natural, considering
that these maps are exactly the ones that preserve dimension of vector spaces, just as bijec-

tions preserve cardinality of sets. It is straightforward to show that a winning strategy for

Duplicator in such a game is su�cient to ensure that the underlying positions cannot be

distinguished in in�nitary rank logic, but again it is not clear that this is necessary.

In this section we describe a game design which is not based on either choosing arbitrary

sets or picking invertible linear maps. Instead, the pebble games we consider are based on

partitioning the game board into a number of disjoint regions, according to some linear-
algebraic criteria, which then limits the possible placement of pebbles on the board. It turns

out that this approach gives a complete characterisation of ≡Rk
p;m that is not itself based on

the notion of de�nability, which is exactly what we are aiming for.

Before describing these games, we �rst establish some notation. Let X be a �nite set and
let P be a partition of X. �at is, P is a collection of non-empty and mutually disjoint subsets
of X (called blocks) whose union is X. For x ∈ X, we write [[x]]P to denote the P-block
containing x. For the next de�nition, recall that for prime p and sets I and J, we identify
functions I × J → [0, p − 1] with matrices over GFp, as discussed in Chapter 4.

De�nition 6.4 (Matrices de�ned by set partitions). Consider �nite sets I and J. Let P be a
set partition of I × J and let γ ∶ P → [0, p − 1] be a map, with p prime. �en we write MP

γ to
denote the I × J matrix over GFp de�ned for all i ∈ I and j ∈ J by

MP
γ ∶ (i , j) ↦ γ([[(i , j)]]P) ∈ [0, p − 1].

∎

In this de�nition, the map γ can be seen as a labelling of the blocks in P with elements of
GFp. �is view is further illustrated with the following example.
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Example 6.5. Consider sets I = {a, b, c, d} and J = {1, 2, 3}. Let

P1 = {(a, 1), (b, 2), (b, 3), (d , 2)}
P2 = {(a, 3), (d , 3)}
P3 = {(a, 2), (b, 1), (c, 1)(c, 2)}
P4 = {(c, 3), (d , 1)}

be subsets of I× J and put P = {P1, P2, P3, P4}. �e partition P can be visualised in block form
in �gure (a), below. Now take p = 5 and consider a labelling γ ∶ P → [0, 4] of the partition
P de�ned by P1 ↦ 0, P2 ↦ 2, P3 ↦ 1, P4 ↦ 2. Figure (b) illustrates the situation where the
labelling γ is applied to the partition P. Finally, by evaluating γ(P) for every block P ∈ P, we
obtain the matrixMP

γ over GFp displayed in �gure (c). Here, we have rank(MP
γ ) = 3.
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∎

De�nition 6.6 (k-pebble m-ary rank-partition game). Let k, m and p be positive integers
with m ≤ k and p prime. �e game board of the k-pebble m-ary rank-partition game over
GFp consists of two structures A and B of the same vocabulary, each with k pebbles labelled
1, . . . , k. �ere are two players, Spoiler and Duplicator, as before. At the beginning of each
round, Spoiler chooses two positive integers s and t with s + t = m. �e remainder of the
round is as follows.

1. Spoiler picks upm pebbles in some order fromA and them corresponding pebbles in
the same order from B.

2. Duplicator has to respond by choosing

(a) a partition P of U(A)s ×U(A)t ,
(b) a partitionQ of U(B)s ×U(B)t , with the same number of blocks as P, and
(c) a bijection f ∶ P→ Q,

for which it holds that for all labellings γ ∶ P→ [0, p − 1],

rank(MP
γ ) = rank(MQ

γ○ f −1). (∗)
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Here the composite map γ ○ f −1 ∶ Q → [0, p − 1] denotes a labelling of Q and MP
γ

and MQ
γ○ f −1 are interpreted as U(A)s ×U(A)t and U(B)s ×U(B)t matrices over GFp,

respectively.

3. Spoiler next picks a block P ∈ P and places the m chosen pebbles from A on the ele-
ments of some tuple in P (in the order they were chosen earlier) and the corresponding
m pebbles from B on the elements of some tuple in f (P) (in the same order).

�is completes one round in the game. If, a�er this exchange, the partial map from A to B
de�ned by the pebbled positions (in addition to constants) is not a partial isomorphism, or

if Duplicator is unable to produce the required partitions, then Spoiler has won the game;

otherwise it can continue for another round. ∎

A variant of the game, whereby r ≤ k of the pebbles are initially placed on elements of each
structure, can be de�ned similar to before. �e following theorem relates de�nability inRk

p;m
with a winning strategy for Duplicator in the rank-partition game.

�eorem 6.7. Duplicator has a winning strategy in the k-pebble m-ary rank-partition game
over GFp starting with positions (A, a⃗) and (B, b⃗) if and only if (A, a⃗) ≡Rk

p;m (B, b⃗).

By considering initial positions (A, a⃗) and (B, b⃗)where a⃗ and b⃗ are empty tuples, we get the
following corollary.

Corollary 6.8. Duplicator has a winning strategy in the k-pebble m-ary rank-partition game
over GFp on A and B if and only if A ≡Rk

p;m B.

Compared with the pebble games we saw earlier, it requires much more e�ort to describe

a winning strategy for Duplicator in the k-pebble rank-partition game. Based only on the
pebbles chosen by Spoiler at the beginning of a round, Duplicator has to partition the two

sides of the game board in a way that both satis�es the rank condition (∗) and which gives
a satisfying response to any placement of pebbles by Spoiler in the subsequent move. Note
in particular that once Duplicator has speci�ed the partitions, she has no further input for

the remainder of that game round. Also note that it is implicit in the de�nition of the game

that at every round, the bijection f chosen by Duplicator has to respect the current pebble
positions, excluding the m pairs of pebbles picked up earlier by Spoiler. �is follows an
argument similar to the one we gave in our discussion of the bijection game in §6.1.

From the viewpoint of �nite model theory, the interest in studying the in�nitary logics

Rk
p;m is mainly to analyse the expressive power of �xed-point logics with operators for ma-

trix rank. In this context, the correspondence between ≡Rk
p;m and the k-pebble rank-partition

game gives us a game-basedmethod for proving non-de�nability of queries in IFPRp;m. �is
proof method is however complicated by the fact that we need to consider two additional

parameters—the prime characteristic p and the quanti�er arity m—in addition to the num-
ber of variables k employed in the game:

To show that a property P of �nite structures is not de�nable in IFPR, it su�ces
to show for each k < ω, m ≤ k and prime p that there is a pair of structures
Ak,m,p and Bk,m,p for which it holds that

1. Ak,m,p has property P but Bk,m,p does not; and
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2. Duplicator has a winning strategy in the k-pebble m-ary rank-partition
game over GFp game on Ak,m,p and Bk,m,p.

Similarly, to show that a property P of �nite structures is not de�nable in IFPRp
for a prime p, it su�ces to follow the procedure above with p �xed. ∎

For the discussion of game strategies, we will need to formally de�ne the quanti�er rank of

in�nitary rank formulae.

De�nition 6.9 (Quanti�er rank). �e quanti�er rank of a formula in Rk
p;m is an ordinal-

valued function qr that is de�ned inductively as follows:

• qr(φ) = 0 for atomic φ;

• qr(¬φ) = qr(φ);

• qr(⋁Φ) = qr(⋀Φ) = sup{qr(φ) ∣ φ ∈ Φ};

• qr(∃x φ) = qr(∀x φ) = qr(φ) + 1;

• qr(rk≥ip (x⃗ , y⃗).(φ1, . . . , φp−1)) = sup{qr(φi) ∣ i ∈ [p − 1]} + 1. ∎

We also need the following lemma on de�nability of types inRk
p;m, which is a direct corollary

of Lemma 1.33 in [58].

Lemma 6.10. Let k,m, p ≥ 2, with p prime, and consider a vocabulary τ. �en for all α ∈
Tp(Rk

p;m; τ, k) there is a formula φα(x1, . . . , xk) ∈ Rk
p;m[τ] such that for all (A, a⃗) ∈ �n[τ; k]:

tp(Rk
p;m;A, a⃗) = α ⇔ A ⊧ φα[a⃗].

�e remainder of this section is devoted to proving �eorem 6.7. Before we can give the

proof, we need to introduce some new notation. �roughout, let τ be a vocabulary and L a
logic. To simplify our notation (and the proof), we will consider only positions (A, a⃗) and
(B, b⃗) with ∥a⃗∥ = ∥b⃗∥ = k; that is, positions where all the pebbles are initially placed on the
board. �e argument for the case when the tuples a⃗ and b⃗ have length r < k is exactly the
same, except that one has to distinguish at every turn between game moves made during the

�rst k rounds and game moves in the subsequent rounds2. �is has the e�ect of making the
proof non-uniform, without actually providing any new insight.

De�nition 6.11. Let φ(x⃗) be a formula of L[τ], x⃗ a k-tuple of variables, and consider an
m-tuple i⃗ = (i1, . . . , im) ∈ [k]m of distinct integers,m ≤ k. �e tuple i⃗ can be seen to index a

2
Note that it is possible to obtain a proof for ∥a⃗∥ = ∥

⃗b∥ = r ∈ [k − 1] as a direct corollary of the situation
when ∥a⃗∥ = ∥

⃗b∥ = k. In this case, given r-tuples a⃗ and ⃗b, one would consider the game with pebble positions a⃗′
and ⃗b′, where the k-tuple a⃗′ is obtained from a⃗ by adding k − r copies of a1 at the end of the tuple (simulating
the case when k − r + 1 pebbles are placed on element a1) and similarly for ⃗b′. Alternatively, one could consider
a game board where the structures A and B are augmented with new vertices ⋆A and ⋆B , respectively, totally

disjoint from the rest of the structure. Here the idea is that a pebble placed on these special elements is to be

treated as being o�-the-board. �is latter approach has the bene�t of working for all r ≤ k, including r = 0,
without changing the proof in any other way. See for example Ebbinghaus and Flum [23] for an application of

this idea.
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sub-tuple of variables from x⃗. �en for each �nite τ-structureA and tuple a⃗ ∈ U(A)k , de�ne
a relation

φ[a⃗]A ↾ i⃗ ∶= {(c1, . . . , cm) ∈ U(A)m ∣ A ⊧ φ[a⃗ c1
i1⋯

cm
im ]} ⊆ U(A)m .

∎

In §4.1.1 we considered matrices de�ned by tuples of formulae (viz. De�nition 4.2). Here

we extend that notation to allow some of the named variables to be interpreted by a �xed

assignment.

De�nition 6.12. Let k, p,m, s and t be positive integers, withm ≤ k, p prime, and s+ t = m.
Let x⃗ = (x1, . . . , xk) and consider tuples i⃗ = (i1, . . . , is) ∈ [k]s and j⃗ = ( j1, . . . , jt) ∈ [k]t of
distinct integers indexing variables in x⃗.

1. Consider a L[τ]-formula φ(x⃗). �en for each �nite τ-structure A and a⃗ ∈ U(A)k ,
write

fmatx⃗ , i⃗ , j⃗(φ,A, a⃗)p ∶ U(A)s ×U(A)t → GFp

to denote the (0, 1)-matrix over GFp de�ned by

fmatx⃗ , i⃗ , j⃗(φ,A, a⃗)p ∶ (b⃗, c⃗) ↦
⎧⎪⎪⎨⎪⎪⎩

1 if (b⃗, c⃗) ∈ φ[a⃗]A ↾ i⃗ j⃗,
0 otherwise

,

for b⃗ ∈ U(A)s and c⃗ ∈ U(A)t .

2. Consider a tuple Φ = (φ1, . . . , φp−1) of L[τ]-formulae and suppose that all the formu-
lae occurring in Φ have free variables amongst x⃗. �en for each �nite τ-structure A
and a⃗ ∈ U(A)k , write

fmatx⃗ , i⃗ , j⃗(Φ,A, a⃗)p ∶ U(A)s ×U(A)t → GFp

to denote the matrix over GFp de�ned by

fmatx⃗ , i⃗ , j⃗(Φ,A, a⃗)p ∶=
p−1
∑
i=1

i ⋅ fmatx⃗ , i⃗ , j⃗(φi ,A, a⃗)p (mod p).

�at is, fmatx⃗ , i⃗ , j⃗(Φ,A, a⃗)p is a linear combination of (0, 1)-matrices fmatx⃗ , i⃗ , j⃗(φi ,A, a⃗)p,
with scalar coe�cients de�ned by the position of each formula φi in the tuple Φ.

∎

Lemma 6.13. Suppose (A, a⃗) ≡Rk
p;m (B, b⃗) and let x⃗ be a tuple of variables whose length

matches that of a⃗ and b⃗. Let s and t be positive integers with s+t = m. �en for all φ1, . . . , φp−1 ∈
Rk

p;m, with free(φi) ⊆ x⃗, and all tuples i⃗ ∈ [k]s, j⃗ ∈ [k]t with ∥i⃗ ∪ j⃗∥ = m, it holds that

rank(fmatx⃗ , i⃗ , j⃗(Φ,A, a⃗)p) = rank(fmatx⃗ , i⃗ , j⃗(Φ,B, b⃗)p),

where the matrix rank is taken over GFp and Φ ∶= (φ1, . . . , φp−1).
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Proof. Let (A, a⃗) ∈ �n[τ; k]. �en for all tuples Φ = (φ1, . . . , φp−1) ofRk
p;m-formulae, with

free(φi) ⊆ x⃗, and all i⃗ ∈ [k]s, j⃗ ∈ [k]t with ∥i⃗ ∪ j⃗∥ = m, the formula

rk
=l
p ((xi1 , . . . , xis), (x j1 , . . . , x js)).(φ1, . . . , φp−1)

is in tp(Rk
p;m;A, a⃗) exactly for the number l ∶= rank(fmatx⃗ , i⃗ , j⃗(Φ,A, a⃗)p). �e statement of

the lemma now follows by considering that tp(Rk
p;m;A, a⃗) = tp(Rk

p;m;B, b⃗).

We are now ready to prove�eorem 6.7. �e proof is given in two separate lemmas, one for

each implication.

Lemma6.14. If (A, a⃗) ≢Rk
p;m (B, b⃗) then Spoiler has awinning strategy in the k-pebble m-ary

rank-partition game over GFp starting with positions (A, a⃗) and (B, b⃗).

Proof. If (A, a⃗) ≢Rk
p;m (B, b⃗) then there is a formula φ(x⃗) ∈ Rk

p;m of quanti�er rank ζ such
that A ⊧ φ[a⃗] but B ⊧ ¬φ[b⃗]. If ζ = 0 then the mapping A → B de�ned by the pebbled
elements a⃗ ↦ b⃗ is not a partial isomorphism and Spoiler has won the game. For the inductive
step, suppose that ζ > 0. We show that Spoiler can in one round force the game into positions
(A, a⃗′) and (B, b⃗′)where (A, a⃗′) and (B, b⃗′) can be distinguished by a formula of quanti�er
rank ζ′ < ζ . By a repeated application of such moves we get a strictly decreasing sequence of
ordinal-valued quanti�er ranks, which must have �nite length. �is gives Spoiler a strategy

to win the game in a �nite number of steps, as claimed.

We can assume without loss of generality that φ is of the form

rk
=l
p ((xi1 , . . . , xis), (x j1 , . . . , x jt)).(φ1, . . . , φp−1)

for some l ≥ 0, s, t ≥ 1 and s + t = m. Other cases reduce to this one through the symmetry
of the claim (we are considering an equivalence relation) and, if necessary, by replacing φ by
one of its Boolean constituents. Set i⃗ = (i1, . . . , is), j⃗ = ( j1, . . . , jt) and Φ = (φ1, . . . , φp−1).
�en by the assumption on φ,

rank(fmatx⃗ , i⃗ , j⃗(Φ,A, a⃗)p) ≠ rank(fmatx⃗ , i⃗ , j⃗(Φ,B, b⃗)p). (†)

Spoiler now starts the round by declaring s and t and picking up the pebbles with labels
i1, . . . , is , and j1, . . . , jt . Duplicator has to respond by choosing partitionsP,Q and a bijection
f ∶ P→ Q, which satisfy the requirements of the game. If Duplicator fails to properly respond
to the challenge of Spoiler, then Spoiler wins the game immediately, so assume that P,Q and
f satisfy the rank condition (∗). �en the following claim shows that the partitions proposed
by Duplicator must contain a block with tuples that disagree on one of the formulae φi .

Claim 2. �ere is a block P ∈ P and tuples c⃗ ∈ P and d⃗ ∈ f (P) for which there is some formula
φi in Φ such that

A ⊧ φi[a⃗ c1
i1⋯

cs
is

cs+1
j1 ⋯

cs+t
jt ]

and
B ⊧ ¬φi[b⃗ d1

i1 ⋯
ds
is

ds+1
j1 ⋯

ds+t
jt ],

or vice versa.
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Proof of claim. Suppose, towards a contradiction, that each block P ∈ P contains only tuples
that all realise one or the other, φi or ¬φi , and all tuples in f (P) realise the same (corre-
sponding) formula, for each i ∈ [p − 1]. Hence, the map ι ∶ P → ℘([p − 1]) that associates
with each P ∈ P the set of formulae in Φ that are realised by some (and hence all) tuples in P
is well-de�ned. Note that for each P ∈ P, the formulae

⋀
i∈ι(P)

φi and ⋀
i∈[1,p−1]∖ι(P)

¬φi

are realised by all tuples in P.

Now consider the matrix fmatx⃗ , i⃗ , j⃗(Φ,A, a⃗)p de�ned overA. By the assumption, we can �nd
a labelling γ ∶ P→ [0, p − 1] such that

fmatx⃗ , i⃗ , j⃗(Φ,A, a⃗)p = MP
γ and fmatx⃗ , i⃗ , j⃗(Φ,B, b⃗)p = MQ

γ○ f −1 .

For instance, γ can be de�ned by γ(P) ∶= ∑i∈ι(P) i for each P ∈ P. But

rank(fmatx⃗ , i⃗ , j⃗(Φ,A, a⃗)p) ≠ rank(fmatx⃗ , i⃗ , j⃗(Φ,B, b⃗)p)

by (†), while rank(MP
γ ) = rank(MQ

γ○ f −1) since we assumed that Duplicator’s response satis-
�es the rank condition of the game. �erefore, we have a contradiction.

Now Spoiler picks some block P that satis�es the statement of the claim. �is allows him to
place the chosen pebbles on elements (c1, . . . , cm) ∈ P and (d1, . . . , dm) ∈ f (P) such that the
two structures, with the corresponding pebble placements, can be distinguished by a formula

of quanti�er rank ζ′ < ζ .

Lemma 6.15. If (A, a⃗) ≡Rk
p;m (B, b⃗) then Duplicator has a winning strategy in the k-pebble

m-ary rank-partition game over GFp starting with positions (A, a⃗) and (B, b⃗).

�e basic idea behind the proof of this lemma is as follows. At every round in the game, the

strategy of theDuplicator is to de�ne partitionsP andQ by grouping together in each block of
a partition all the elements realising the same ≡Rk

p;m -type (with respect to the current game

positions). �e bijection f ∶ P → Q is similarly de�ned by pairing together blocks P ∈ P
and Q ∈ Q whose elements all realise the same ≡Rk

p;m -type. If Duplicator can play in this

manner, she can ensure that any choices made by Spoiler are restricted to blocks which do

not distinguish the two structures.

Proof. Assume (A, a⃗) ≡Rk
p;m (B, b⃗). We show that Duplicator has a strategy to maintain

≡Rk
p;m -equivalence of game positions. In other words, we show that no matter which pebbles

Spoiler chooses in the next round, Duplicator can respond with partitions that satisfy the

requirements of the game and which ensure that the resulting game positions will be ≡Rk
p;m -

equivalent. �roughout, we write x⃗ = (x1, . . . , xk) to denote a k-tuple of distinct variables.
Now suppose that Spoiler starts a round by choosing a pair of integers s and t with s+ t =

m and picking up pebbles labelled i1, . . . , is , j1, . . . , jt , in that sequence. Write i⃗ = (i1, . . . , is),
j⃗ = ( j1, . . . , jt) and l⃗ = i⃗ j⃗ for short. For each α ∈ Tp(Rk

p;m; τ, k), let φα(x⃗) be the formula of
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Rk
p;m that isolates α over �nite τ-structures (by Lemma 6.10). �at is, φα(x⃗) will be realised

inA by a tuple t⃗ if and only if tp(Rk
p;m;A, t⃗) = α, and similarly for tuples over B. Now de�ne

Pα ∶= φα[a⃗]A ↾ l⃗ = {(c1, . . . , cm) ∈ U(A)m ∣ tp(Rk
p;m;A, a⃗ c1

l1⋯
cm
lm ) = α} ⊆ U(A)m ,

Qα ∶= φα[b⃗]B ↾ l⃗ = {(d1, . . . , dm) ∈ U(B)m ∣ tp(Rk
p;m;B, b⃗ d1

l1 ⋯
dm
lm ) = α} ⊆ U(B)m .

�at is, each Pα consists of all m-tuples that, when used to replace elements of a⃗ according
to the index pattern l⃗ , results in a tuple whose type over A is α (and similarly for each Qα).
�e strategy of Duplicator is now to respond with partitions

P ∶= {Pα ∣ α ∈ Tp(Rk
p;m; τ, k) and Pα ≠ ∅},

Q ∶= {Qα ∣ α ∈ Tp(Rk
p;m; τ, k) and Qα ≠ ∅},

and a mapping f ∶ P → Q de�ned by Pα ↦ Qα for all non-empty Pα . It should be clear that
P andQ are partitions of U(A)s ×U(A)t and U(B)s ×U(B)t , respectively (just observe that
each tuple of elements realises only one type). It remains to be shown that P,Q and f satisfy
the requirements (∗) of the game.

Claim 3. �e mapping f is a bijection.

Proof of claim. For all types α, it holds that

Pα = ∅⇔ rk
=0
p ((xi1 , . . . , xis), (x j1 , . . . , x jt)).(φα) ∈ tp(Rk

p;m;A, a⃗),

where φα is de�ned as the conjunction of all formulae in α, as before. Here the formula
rk

=0
p ((xi1 , . . . , xis), (x j1 , . . . , x jt)).(φα) asserts that the number of distinct tuples (xl1 , . . . , xlm)

that realise φα over (A, a⃗) is nil. As tp(Rk
p;m;A, a⃗) = tp(Rk

p;m;B, b⃗), it follows that the two
partitions P andQ have the same cardinality, and the claim follows.

Claim 4. For all labellings γ ∶ P→ [0, p − 1] it holds that rank(MP
γ ) = rank(MQ

γ○ f −1).

Proof of claim. Let γ ∶ P → [0, p − 1] be a labelling. From the de�nition of P, it can be
seen that the collection of blocks labelled i ∈ [0, p − 1] by γ corresponds to a class of types
Ωi ⊆ tp(Rk

p;m;A, a⃗), with each type α ∈ Ωi isolated by a formula φα ∈ Rk
p;m, as before. �at

is, for each type α it holds that

α ∈ Ωi ⇔ γ(Pα) = γ(φα[a⃗]A ↾ l⃗) = i .

For i ∈ [0, p − 1], let ψi ∶= ⋁α∈Ω i φα ∈ Rk
p;m. It can now be seen that

MP
γ ∶=

p−1
∑
i=1

i × ( ∑
α∈Ω i

fmatx⃗ , i⃗ , j⃗(φα ,A, a⃗)p)

=
p−1
∑
i=1

i × fmatx⃗ , i⃗ , j⃗(ψi ,A, a⃗)p

= fmatx⃗ , i⃗ , j⃗(ψ1, . . . ,ψp−1,A, a⃗)p ,
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and

MQ
γ○ f −1 ∶=

p−1
∑
i=1

i × ( ∑
α∈Ω i

fmatx⃗ , i⃗ , j⃗(φα ,B, b⃗)p)

=
p−1
∑
i=1

i × fmatx⃗ , i⃗ , j⃗(ψi ,B, b⃗)p

= fmatx⃗ , i⃗ , j⃗(ψ1, . . . ,ψp−1,B, b⃗)p .

By Lemma 6.13 we know that

rank(fmatx⃗ , i⃗ , j⃗(ψ1, . . . ,ψp−1,A, a⃗)p) = rank(fmatx⃗ , i⃗ , j⃗(ψ1, . . . ,ψp−1,B, b⃗)p).

Hence, rank(MP
γ ) = rank(MQ

γ○ f −1) over GFp, as required.

By these claims it can be seen that for any block P ∈ P, any choice of elements (c1, . . . , cm) ∈ P
and (d1, . . . , dm) ∈ f (P) that Spoiler can make will result in tuples

a⃗ c1
i1⋯

c1
is

cs+1
j1 ⋯

cs+t
jt and b⃗

d1
i1 ⋯

d1
is

ds+1
j1 ⋯

ds+t
jt

that realise the sameRk
p;m-type. Hence, ≡R

k
p;m -equivalence of game positions is maintained.

Compared with the Immerman-Lander game or the Hella bijection game, it is clearly much

harder for Duplicator to maintain a winning strategy in the rank-partition game. �is of

course corresponds with the fact that rank logics are strictly more expressive than counting

logics. Generally speaking, in order to construct a winning strategy for Duplicator in the

rank-partition game, the size of the blocks in the set partitions P and Q becomes a crucial
measure. With larger blocks, Spoiler has more freedom in placing down pebbles at the end

of the round, but the rank condition is more easily satis�ed. Conversely, with smaller block

size, Spoiler is given fewer options for placing down pebbles, but it becomes harder to ensure

that the rank condition is ful�lled.

6.3 Pebble games for generalised quanti�ers

It was shown by Dawar [15] that if there is a logic that captures PTIME, then there is such a

logic obtained by adding one vectorised family of generalised quanti�ers to �rst-order logic.

A game-based method that can characterise expressibility in logics with generalised quanti-

�ers would therefore be an important tool for studying the descriptive complexity of PTIME.

Previously, there have been some attempts to de�ne a general game template for this pur-

pose. In [37], Hella developed the n-bijective two-player game, and showed that this game
characterises exactly the expressive power of �nite-variable in�nitary logic extended with all
generalised quanti�ers of arity up to n. An attempt to develop a more �ne-grained game
argument was made by Kolaitis and Väänänen [48], who studied �xed-point and in�nitary

logics extended by arbitrary sets of generalised quanti�ers. �eir game crucially relies on

Spoiler choosing only de�nable sets or relations in one of the game structures. Since the
aim of the game method is to provide an alternative combinatorial view of de�nability, this

approach is not entirely satisfactory.
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In this section we address to this topic by giving an alternative game characterisation of

�nite-variable in�nitary logic equipped with any set of generalised quanti�ers. �ese games
are based on the idea of using set partitions to restrict the possible moves in a pebble game,

just like the rank-partition game we discussed earlier.

De�nition 6.16 (k-pebbleQ-partition game). Each round in the k-pebbleQ-partition game
starts by Spoiler choosing a quanti�er Q ∈ Q. Write (n1, . . . , nm) to denote the type of Q,
where each ni is a positive integer, and let n ∶= max{n1, . . . , nm}. �e rest of the round then
proceeds as follows.

1. Spoiler picks up n pebbles from A and the n corresponding pebbles in the same order
from B.

2. Duplicator has to respond by choosing a triple (P,Q, f ) where:

(a) P is a partition of U(A)n,
(b) Q is a partition of U(B)n with the same number of blocks as P, and
(c) f ∶ P→ Q is a bijection.

Together, these objects have to satisfy the condition that for all collections of blocks

S1 ⊆ P, . . . , Sm ⊆ P, it holds that

(U(A);X1, . . . , Xm) ∈ Q⇔ (U(B);Y1, . . . ,Ym) ∈ Q , (‡)

where for each i, Xi ∶= proj(⋃P∈S i P, ni) and Yi ∶= proj(⋃P∈S i f (P), ni) are relations
of arity ni over U(A) and U(B), respectively (obtained by taking the projection of a
relation of arity n onto its �rst ni coordinates)

3. Spoiler next picks a block P ∈ P and places the n chosen pebbles from A on the ele-
ments of some tuple in P (in the order they were chosen earlier) and places the corre-
sponding n pebbles fromB on the elements of some tuple in f (P) (in the same order).

�at completes one round in the k-pebble Q-partition game. If, a�er this exchange, the
partial map from A to B de�ned by the pebbled positions (in addition to constants) is not a
partial isomorphism, or Duplicator is unable to produce the required partitions, then Spoiler

has won the game; otherwise it can continue for another round. ∎

As before, we also consider the game where some of the pebbles are initially placed on the

game board. �e following theorem relates de�nability in Lk(Q) with a winning strategy in
the game.

�eorem 6.17. Duplicator has a winning strategy in the k-pebbleQ-partition game on (A, a⃗)
and (B, b⃗) if and only if the positions (A, a⃗) and (B, b⃗) cannot be distinguished inLk(Q).

�eproof of this theorem resembles the proof of�eorem6.7, but ismore technical. We omit

the details here as they are somewhat outside the scope of this thesis. Instead, we illustrate

the power of this design by giving alternative game characterisations of the relations ≡Lk
and

≡Ck , as follows.
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At each round in the k-pebble cardinality-partition game onA andB, Spoiler picks up a pebble
from A and the corresponding pebble from B. Duplicator has to respond by choosing (a) a
partition P ofU(A), (b) a partitionQ ofU(B), with the same number of blocks as P, and (c)
a bijection f ∶ P→ Q, for which it holds that ∥P∥ = ∥ f (P)∥, for all blocks P ∈ P. Spoiler then
picks a block P ∈ P, and places the chosen pebble in A on an element in P ⊆ A and places
the corresponding pebble in B on an element in f (P) ⊆ B. �is completes one round in the
game. If Duplicator fails to produce the required partitions or the partial map de�ned by

the pebbled elements is not a partial isomorphism, then Spoiler wins the game. Otherwise

it can continue for another round. It can be shown that Duplicator has a strategy to play

this game forever if, and only if, A ≡Ck B. Similarly, the rules of the k-pebble partition game
are de�ned in exactly the same way as above, except we drop the requirement that any two

corresponding blocks have to have the same cardinality, i.e. Duplicator does not have to show

that ∥P∥ = ∥ f (P)∥ for all P ∈ P. It can be shown that Duplicator has a strategy to play this
game forever if and only if A ≡Lk

B.
�ese two games can be seen as special cases of the rank-partition game, which of course

re�ects the fact that the corresponding in�nitary logics are both certain restrictions of in�ni-

tary rank logic.

Finally, we note that Luosto [56] has independently given a back-and-forth characterisation

of equality in �rst-order logic with any set of generalised quanti�ers3. �e game characteri-

sation given by Luosto is not based on a partitioningmethod like the onewe described above.

Instead, in Luosto’s game, Duplicator can respond to Spoiler choosing a relation in one struc-

ture by either accepting the choice (and giving a matching relation in the opposite structure)

or by challenging Spoiler’s choice. �e latter ensures that Spoiler will only choose de�nable
relations at any point in the game, without making ‘de�nability’ an explicit requirement of

the game rules.

3
�is was kindly pointed out to us by one of the examiners of this thesis.



Chapter 7

Non-de�nability results for
�xed-point logic with rank

�roughout this dissertation, we have given a number of examples illustrating the expressive

power of rank logics. For instance, we have shown thatmany of the problems known to sepa-

rate IFPC fromPTIME, such as deciding the parity of CFI graphs and deciding isomorphism

ofmultipedes, are already expressible in �rst-order logic with rank, so also in IFPR. However,

it can be seen that for all the expressive results we have obtained, the underlying construc-

tion has been based on matrices or linear equations over a �xed �nite �eld. For instance,
the two examples mentioned earlier rely on solving linear equations over the two-element

�eld. �is raises an important question, which is to what extent does the characteristic of the

underlying �eld a�ect the expressive power of the corresponding rank logic?

In this chapter we give a partial answer to this question, by using the rank-partition game to

delimit the expressive power of rank logics restricted to a �xed arity and a �xed prime �eld.

Recall that for a prime p and m ≥ 1, we write FORp;m to denote FORp restricted to rank
operators of arity at most m. Similarly, we write Rω

p;m to denote �nite-variable in�nitary
logic with rank quanti�ers of arity at most m over GFp. With this notation, our main result
can be stated as follows.

�eorem 7.1. For all distinct primes p and q, there is a property of �nite structures which is
de�nable in FORq;2 but not inRω

p;2.

As a direct corollary we get a partial separation of �xed-point rank logics over di�erent prime

�elds.

Corollary 7.2. For all distinct primes p and q, IFPRp;2 ≢ IFPRq;2 over �nite structures.

For the proof of �eorem 7.1, we de�ne for each pair of distinct primes p and q a sequence
of polynomial-time decidable and pairwise disjoint classes of �nite structures, C0, . . . ,Cq−1.
Here the signature of the structures depends only on q. We show that for each i ∈ [0, q − 1],
there is a �rst-order de�nable reduction from the problem of deciding membership in Ci ,
given a structure in C ∶= ⋃i Ci , to the problem of deciding solvability of a system of linear
equations over GFq. Coupled with the fact that the class C can be de�ned in �rst-order
logic with counting, this shows that each Ci can be de�ned by a sentence of FORq. We then
establish that for each integer k ≥ 2 and all distinct i , j ∈ [0, q− 1], there are structuresA ∈ Ci

110
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and B ∈ C j for which it holds that Duplicator has a winning strategy in the k-pebble 2-ary
rank-partition game over GFp on A and B. �is illustrates that none of the classes Ci can be
de�ned inRω

p;2, which completes the proof.

�e remainder of this chapter is split into three main sections. In §7.1 we de�ne a family of

structures, called C-structures, that will be used to de�ne the main separating query for the
proof of �eorem 7.1. �is construction is quite generic, and is not restricted to the applica-

tion we describe in this chapter. Broadly speaking, the structures we de�ne are obtained by

�xing an Abelian group H and encoding a small circuit, with values from H, into a larger
graph with some auxiliary relations. �is method of encoding a circuit G over H into a
structure C(G ,H) can be seen as a variant of a construction by Torán [64], who considered
arithmetic circuits with designated input and output nodes at each gate. Our “H-circuits”,
on the other hand, are designed to model a closed network where each node is assigned a

charge, which in this case is an element of the group H. �is intuition allows us to show that
there is a direct correspondence between the automorphisms of a structure C(G ,H) and
redistributions of charge on an H-circuit G.
In §7.2we describe families ofmatrices obtained by uniformly partitioning �nite sets with

certain properties. To simplify our notation, we describe this construction in quite generic

terms, even though the partitions we obtain will ultimately be applied to the vertex sets of

C-structures. Having de�ned these partitions, we then explicitly construct invertible linear
transformations that relate matrices obtained by one kind of partition to matrices obtained

by a slightly di�erent partition.

Finally, in §7.3 we will, for each pair of distinct primes p and q, give a winning strategy
for Duplicator in the rank-partition game over GFp played on a pair of C-structures A and
B over the same H-circuit G. Here the group H is taken to be the additive group of integers
modulo q. �e technical argument for showing that Duplicator’s winning strategy satis�es
the algebraic condition of the rank-partition game is obtained by appropriately applying the

matrix partitions developed in §7.2 to C-structures.

7.1 Building blocks

In this section we de�ne the structures that will be used in §7.3 to describe a winning strategy

for Duplicator in the rank-partition game. �ese structures are obtained by �rst �xing a

�nite group H and a graph G where the vertices have been labelled with values from H. It
will become convenient to view a graph of that form as a circuit over the group H, as we will
discuss further in §7.1.1. �en, given G and H as above, we expand the circuit G into a larger
structure by combining a series of graph gadgets along with some auxiliary relations on the

edges to encode the group operation on H. �is construction will be described in further
detail in §7.1.2. �e main feature of these structures is that they are very rich in symmetries,

as we will discuss in §7.1.3. Due to these symmetries, it will be possible for Duplicator to

hide the di�erence between a pair of similar but non-isomorphic structures of this form by

continuously moving around the small area of di�erence, as we will see later.

7.1.1 Circuits over Abelian groups

Consider an Abelian group H, written additively and with zero 0. For any function f ∶ A→
H, where A is a �nite set, we write f (A) ∶= ∑a∈A f (a). A circuit over H, or an H-circuit, is a
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pair (G , γ), whereG = (V , E) is a graph and γ ∶ V → H a function that assigns a charge γ(v)
to each vertex v ∈ V in the circuit. An H-redistribution on G is a function t ∶ V × V → H
which satis�es:

1. t(v ,w) = −t(w , v) for all vw ∈ E, and

2. t(v ,w) = t(w , v) = 0 for all vw ∉ E.

�e result of performing an H-redistribution t on a circuit (G , γ) is a new circuit (G , γt),
where

γt(v) ∶= γ(v) + ∑
w∈N(v)

t(w , v),

for all v ∈ V . �at is, for each edge vw ∈ E, exactly t(w , v) units of charge �ow from w to
v. Equivalently, exactly t(v ,w) = −t(w , v) units of charge �ow from v to w. Note that this
process preserves the total charge on the circuit, for

γt(V) = ∑
v∈V

γt(v) = ∑
v∈V

(γ(v) + ∑
w∈N(v)

t(w , v))

= ∑
v∈V

γ(v) + ∑
vw∈E

(t(v ,w) + t(w , v))

= ∑
v∈V

γ(v) + ∑
vw∈E

(t(v ,w) − t(v ,w))

= ∑
v∈V

γ(v) = γ(V).

Example 7.3. We illustrate an H-redistribution on a graph G = (V , E), where H is the
additive group Z/(5Z).

0
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1

0

4

(a) Before applying t.
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0

4

1
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(b) H-redistribution t.

3

3

0

3

3

(c) A�er applying t.

�e �rst �gure (a) above shows the initial circuit, where the charge on each vertex is indi-

cated by its label. �e redistribution t ∶ V ×V → H is illustrated in �gure (b). Here, the edge
labels, together with the orientation of the edges, determine t. �at is, if there is a directed
edge from v to w with label c, then t(v ,w) = c and t(w , v) = −c. Figure (c) shows the result
a�er applying the redistribution t on the original circuit. Here, all the arithmetic is modulo
5; for instance, the charge at the bottommost vertex, a�er redistribution, is 4 + 4 − 0 = 8 ≡ 3
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mod 5. Note that the total charge before redistribution (7 ≡ 2 mod 5) and the total charge
a�er redistribution (c) (12 ≡ 2 mod 5) are the same, as expected. ∎

Later in this section, we will need the following basic result on H-circuits.

Lemma 7.4 (Charge preservation lemma). Let (G , γ) and (G , σ) be H-circuits, where G =
(V , E) is a connected graph and H a �nite Abelian group, written additively. �en γ(V) =
σ(V) if and only if there is an H-redistribution t such that γt = σ.

Proof. �e “if ” direction is clear, for an H-redistribution preserves the total charge on a
circuit, as noted above. For the other direction, suppose (G , γ) and (G , σ) are H-circuits as
described and γ(V) = σ(V). Let T = (V , F , r) be a directed spanning tree of G with root
r ∈ V (that is, the edges are directed from the root). Suppose r has at least one child in T ;
otherwise the claim holds trivially.

We construct an H-redistribution t ∶ V × V → H as follows. Firstly, we set t(v ,w) = 0
for all v ,w ∈ V with (v ,w), (w , v) ∉ F. Secondly, we de�ne t(v ,w) for all (v ,w) with either
(v ,w) ∈ F or (w , v) ∈ F by induction, starting with the leaves of the tree T and moving
upwards towards the root.

• Base case. If v is a leaf ofT , with parentw, then set t(v ,w) ∶= γ(v)−σ(v) and t(w , v) ∶=
σ(v) − γ(v). �en γt(v) = γ(v) + t(w , v) = σ(v), as required.

• Inductive step. Consider a vertex v with children u1, . . . , uk , and suppose that t(v , ui)
and t(ui , v) are already de�ned, for each i ∈ [k]. If v is the root then we are already
done; if not, suppose v has parent w. �en we set

t(w , v) ∶= σ(v) − γ(v) −
k
∑
i=1

t(ui , v),

and t(v ,w) ∶= −t(w , v). By this de�nition,

γt(v) = γ(v) + ∑
x∈NG(v)

t(x , v) = γ(v) + t(w , v) +
k
∑
i=1

t(ui , v) = σ(v),

as required.

By the induction, this procedure constructs a function t such that γt(v) = σ(v) for all vertices
v ≠ r. Hence, γt(V ∖{r}) = σ(V ∖{r}). We claim that it also holds that γt(r) = σ(r), which
then completes the proof. To show this, we use the fact that t is a redistribution, so the total
charge must be preserved. Hence, γt(V) = σ(V) and

γt(V) = γt(r) + γt(V ∖ {r}) = γt(r) + σ(V ∖ {r}),

which shows that γt(r) = σ(r).
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7.1.2 C-structures

We now describe a scheme for encoding H-circuits (G , γ) into �nite relational structures
CH(G , γ) with speci�c properties. �e structure CH(G , γ) consists of a highly symmetric
graph along with auxiliary relations that encode the group operation on H. �e role of these
auxiliary relations is to ensure that each automorphism of CH(G , γ) corresponds to a redis-
tribution of charge on the H-circuit (G , γ), as we will see later. Note that from now on, we
assume that all graphs have at least two vertices.

Before describing the encoding scheme, we establish some common notation. For f , g ∶ A→
H, where A is a �nite set, we write f − g and f + g to denote the functions x ↦ f (x) − g(x)
and x ↦ f (x) + g(x), respectively, for x ∈ A. For i ∈ H, write (A → H)i to denote the set
of functions f ∶ A → H with f (A) = i. Observe that for any i , j ∈ H, f ∈ (A → H)i and
g ∈ (A→ H) j, we have f + g ∈ (A→ H)i+ j and f − g ∈ (A→ H)i− j.

Now let G = (V , E) be a graph and de�ne sets

B(v ,w) ∶= {(v ,w , i) ∣ i ∈ H} ⊆ V × V ×H ∀v ,w ∈ V with vw ∈ E ,
O(v) ∶= ⋃

w∈N(v)
B(v ,w) ⊆ V × V ×H ∀v ∈ V , and

I(v , k) ∶= (E(v) → H)k ∀v ∈ V ∀k ∈ H.

De�nition 7.5 (Graph gadgets). Let G = (V , E) be a connected graph and let H be a �-
nite Abelian group. For v ∈ V and k ∈ H, write XH(v , k) to denote the graph on vertices
O(v)∪̇I(v , k) with edge relation

E(XH(v , k)) ∶= {{(v ,w , i), f } ∣ (v ,w , i) ∈ O(v), f ∈ I(v , k) and f (vw) = i}.

We collectively refer to graphs of the form XH(v , k) as graph gadgets. ∎

We refer to the two collections of vertices O(v) and I(v , k) as the outer vertices and inner
vertices of XH(v , k), respectively. Note that each XH(v , k) is a bipartite graph, as the only
edges are those between outer vertices and inner vertices. An example of a graph gadget is

shown in Figure 7.1.

De�nition 7.6. Consider anH-circuit (G , γ), whereG = (V , E) is a connected graph andH
a �nite Abelian group. Let C∗H(G , γ) be the graph obtained from the disjoint union of graph
gadgets ⋃̇v∈VXH(v , γ(v)) by adding an edge between all vertices (v ,w , i) and (w , v , j), for
vw ∈ E and i , j ∈ H. ∎

Observe that for each vw ∈ E, the subgraph of C∗H(G , γ) induced by B(v ,w) ∪ B(w , v) is a
complete bipartite graph, with the twoparts given byB(v ,w) andB(w , v). Wenow introduce
the main building blocks that are used in this chapter, each one a �nite relational structure

encoding an H-circuit (G , γ), where G is a linearly ordered graph. Such an encoding is
obtained fromC∗H(G , γ) by including a linear preorder on the vertex set and adding auxiliary
relations for describing the group operation on H.

De�nition 7.7 (C-structures). Consider an H-circuit (G , γ), where G = (V , E , ⩽) is an or-
dered connected graph and H a �nite Abelian group, written additively. �e ordering ⩽
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(v , x , 0)

(v , x , 1)

(v , x , 2)

(v , y, 0)

(v , y, 1)

(v , y, 2)(v , z, 0)

(v , z, 1)

(v , z, 2)
f(0,0,0)

f(0,1,2)

f(0,2,1)f(1,0,2)

f(1,1,1)

f(1,2,0)

f(2,0,1) f(2,1,0)

f(2,2,2)

x

yz

Graph G

v

Figure 7.1: A graph gadgetXH(v , 0) for the additive group H = Z/(3Z), constructed from a vertex v
in G of degree three. �e vertex v is shown in the inset with its three neighbours x, y and z labelled.
Each inner vertex in (E(v) → H)0 is labelled by the values it takes on each of the three edges vx, vy
and vz, in that order. �at is, we write f(i , j ,k) to denote the function de�ned by: vx ↦ i, vy ↦ j and
vz ↦ k. Observe thatXH(v , 0) is bipartite: the only edges are those between outer vertices and inner
vertices.

induces a lexicographic ordering on V × V which we call ⩽lex. Let

CH(G , γ) ∶= (C∗H(G , γ), ≼, (Ak)k∈H)

where the linear preorder ≼ is de�ned by

• f ≼ g if and only if v ⩽ w, for all f ∈ I(v , γ(v)), g ∈ I(w , γ(w)) and v ,w ∈ V ;

• f ≼ (v ,w , i), for all inner vertices f and outer vertices (v ,w , i); and

• (v1,w1, i1) ≼ (v2,w2, i2) if and only if (v1,w1) ⩽lex (v2,w2), for all outer vertices
(v1,w1, i1) and (v2,w2, i2);

and

Ak ∶= {{(v ,w , i), (w , v , j)} ∣ vw ∈ E and i + j ∈ k} ⊆ E(C∗H(G , γ))
is a collection of edges, for each k ∈ H. ∎

We collectively refer to structures of the form CH(G , γ) as C-structures (for lack of a better
term) and denote by τH the signature of C-structures over a groupH. Note that the preorder
≼ serves mainly to restrict the automorphisms of each CH(G , γ) (as well as isomorphisms
between di�erent C-structures) to maps that preserve each set of inner vertices I(v , γ(v))
and each set of outer vertices B(v ,w), for v ∈ V and w ∈ N(v). For each vw ∈ E, the
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relations Ak , k ∈ H, can be seen as a colouring of the edges in the complete bipartite graph
induced by B(v ,w) ∪ B(w , v). In this sense, an edge (v ,w , i)(w , v , j) is given the colour Ak
if and only if i + j = k.

7.1.3 Isomorphisms of C-structures

We complete our study of C-structures by showing that automorphisms of CH(G , γ) cor-
respond with certain redistributions of charge on the H-circuit (G , γ). �is supports our
previous claim that C-structures are rich in symmetries. In particular, the connection be-
tween symmetries andH-redistributions allows us to show that two structures CH(G , γ) and
CH(G , γ′) are isomorphic, if and only if the two circuits (G , γ) and (G , γ′) have the same
amount of H-charge.

�e �rst step in this analysis is to consider maps between di�erent graph gadgets, as in the

following lemma.

Lemma 7.8 (Graph gadget isomorphisms). Let G = (V , E) be a connected graph and let H
be a �nite Abelian group, written additively. Let k ∈ H and v ∈ V. �en for any function
h ∶ E(v) → H, there is a unique isomorphism

φh ∶ XH(v , k) → XH(v , k + h(E(v)))

for which it holds that φh ∶ (v ,w , i) ↦ (v ,w , i + h(vw)) for each vw ∈ E(v) and i ∈ H.

Proof. Let l ∶= k + h(E(v)) and write XH(v , k) = (Vk , Ek) and XH(v , l) = (Vl , El). We
de�ne φh ∶ Vk → Vl by

φh ∶ (v ,w , i) ↦ (v ,w , i + h(vw)) for all (v ,w , i) ∈ O(v),
φh ∶ f ↦ f + h for all f ∈ I(v , k).

We claim that φh is an isomorphism. First of all, note that if f ∈ I(v , k) then f (E(v)) = k,
and hence

( f + h)(E(v)) = f (E(v)) + h(E(v)) = k + h(E(v)) = l .

�erefore, f + h ∈ I(v , l). All that remains is to show that for any two vertices x , y ∈ Vk ,
xy ∈ Ek if and only if φh(x)φh(y) ∈ El . In each of the two graphs, there are only edges
between outer vertices and inner vertices. Consider an outer vertex (v ,w , i) and an inner
vertex f in XH(v , k). By de�nition of the edge relations Ek and El ,

(v ,w , i) f ∈ Ek ⇔ f (vw) = i
⇔ f (vw) + h(vw) = i + h(vw)
⇔ ( f + h)(vw) = i + h(vw)
⇔ (v ,w , i + h(vw))( f + h) ∈ El

⇔ φh((v ,w , i))φh( f ) ∈ El ,

as required. To show uniqueness, suppose that there is an isomorphism ψ ∶ XH(v , k) →
XH(v , l), di�erent from φh, with the property that ψ((v ,w , i)) = (v ,w , i + h(vw)) for all
(v ,w , i) ∈ O(v). By assumption, there must then be at least one vertex f ∈ I(v , k) such that
ψ( f ) ≠ φh( f ).
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Consider (v ,w , i) ∈ O(v) so that (v ,w , i) f ∈ Ek , and hence f (vw) = i. Since ψ is an
isomorphism, wemust haveψ((v ,w , i))ψ( f ) ∈ El , or equivalently,ψ( f )(vw) = i+h(vw) =
f (vw) + h(vw). �is implies that ψ( f )(vw) = ( f + h)(vw) for all vw ∈ E(v); that is,
ψ( f ) = f + h = φh( f )— a contradiction.

Lemma 7.9. Let G = (V , E , ⩽) be an ordered connected graph and let H be a �nite Abelian
group, written additively. Let γ, σ ∶ V → H be charge functions on G. �en CH(G , γ) ≅
CH(G , σ) if and only if there is an H-redistribution t on G such that σ = γt .

Proof. Consider two H-circuits (G , γ) and (G , σ), as in the statement of the lemma. For
k ∈ H, we write Ak(CH(G , γ)) and Ak(CH(G , σ)) to denote the Ak-relation in CH(G , γ)
and CH(G , σ), respectively.

For the “if ” direction, suppose t ∶ V ×V → H is an H-redistribution on G, such that σ = γt .
For each v ∈ V , write ht,v ∶ E(v) → H for the function de�ned by vw ↦ t(w , v). �at is, for
each edge vw ∈ E(v), ht,v(vw) describes the amount of charge being redistributed from w
to v. By de�nition of H-redistribution,

γt(v) ∶= γ(v) + ∑
w∈N(v)

t(w , v) = γ(v) + ht,v(E(v)),

so by Lemma 7.8, φht ,v is an isomorphism from XH(v , γ(v)) to XH(v , γ(v) + ht,v(E(v))) =
XH(v , γt(v)). By combining all the maps (φht ,v)v∈V , write

πt ∶ CH(G , γ) → CH(G , γt)
to denote the map which is de�ned for all v ∈ V and x ∈ XH(v , γ(v)) by

πt(x) ∶= φht ,v(x).
We claim that πt is an isomorphism. Since each φht ,v is an isomorphism from XH(v , γ(v))
to XH(v , γt(v)), it follows that πt preserves the preorder ≼ and all edges between inner and
outer vertices. In particular, it maps the set of inner vertices I(v , γ(v)) induced by a ver-
tex v ∈ V to the corresponding set of inner vertices I(v , γt(v)) and maps the set of outer
vertices B(v ,w) induced by an edge vw to the corresponding set of outer vertices B(v ,w)
in XH(v , γt(v)). Since (B(v ,w), B(w , v)) forms a complete bipartite graph, it follows also
that πt preserves the edge relation between elements of B(v ,w) and elements of B(w , v), for
vw ∈ E. All that remains to show is that πt preserves the edge colour relations Ak , for k ∈ H.
Recall that the H-redistribution t satis�es the condition t(v ,w) = −t(w , v), for all vw ∈ E.
�en by the de�nition of πt , it holds that

πt ∶ (v ,w , i) ↦ (v ,w , i + t(w , v)) and
πt ∶ (w , v , j) ↦ (w , v , j + t(v ,w)) = (w , v , j − t(w , v)),

for all vw ∈ E and i , j ∈ H. Hence,
πt(v ,w , i)πt(w , v , j) ∈ Ak(CH(G , γt))

⇔(i + t(w , v)) + ( j − t(w , v)) = k
⇔i + j = k
⇔(v ,w , i)(w , v , j) ∈ Ak(CH(G , γ)),

as required.
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For the “only if ” direction, suppose there is an isomorphism π ∶ CH(G , γ) → CH(G , σ). As π
must preserve the preorder ≼, it follows that each set of outer vertices B(v ,w) in CH(G , γ),
induced by an edge vw, is mapped to the corresponding set of outer vertices B(v ,w) in
CH(G , σ). �e following claim shows that the mapping B(v ,w) ↦ B(v ,w) induced by π
will not be arbitrary.

Claim 5. For every v ,w ∈ V with vw ∈ E, there is ∆v ,w ∈ H for which it holds that πt ∶
(v ,w , i) ↦ (v ,w , i + ∆v ,w), for all i ∈ H.

Proof of claim. Suppose, towards a contradiction, that there are v ,w ∈ V , with vw ∈ E, and
i , j ∈ H, i ≠ j, such that

πt ∶ (v ,w , i) ↦ (v ,w , i + ∆i) and
πt ∶ (v ,w , j) ↦ (v ,w , j + ∆ j),

but ∆i ≠ ∆ j. Since πt is an isomorphism, it must preserve the relations Am, m ∈ H. Hence it
must hold that

πt ∶ (v ,w ,−i) ↦ (v ,w ,−(i + ∆i)) and
πt ∶ (v ,w ,− j) ↦ (v ,w ,−( j + ∆ j)).

Write i − j = m, where m ≠ 0 by assumption. �en (v ,w , i)(w , v ,− j) ∈ Am(CH(G , γ)) and
therefore πt(v ,w , i)πt(w , v ,− j) = (v ,w , i + ∆i)πt(w , v ,−( j + ∆ j)) ∈ Am(CH(G , σ)). But
by de�nition of the relation Am,

(v ,w , i + ∆i)πt(w , v ,−( j + ∆ j)) ∈ Am(CH(G , σ))
⇔(i + ∆i) + (− j − ∆ j) = m
⇒(i − j) + (∆i − ∆ j) = m + (∆i − ∆ j) = m,

which is a contradiction.

Now let t ∶ V × V → H be the function de�ned by

t(v ,w) ∶=
⎧⎪⎪⎨⎪⎪⎩

∆v ,w if vw ∈ E ,
0 otherwise.

Since πt preserves the relations Am, it must hold that ∆v ,w = −∆w ,v for all v ,w ∈ V with
vw ∈ E. Hence, t is an H-redistribution, with γt = σ .

By combining Lemma7.9 andLemma7.4, we get the following characterisation ofC-structures,
up to isomorphism.

�eorem 7.10. Let G = (V , E , ⩽) be an ordered connected graph and let H be a �nite Abelian
group, written additively. Let γ, σ ∶ V → H be charge functions on G. �en CH(G , γ) ≅
CH(G , σ) if and only if γ(V) = σ(V).

It follows that for eachG andH, there are exactly ∥H∥ distinct structures CH(G , ⋅), up to iso-
morphism. In the following, wewrite CkH(G), for k ∈ H, to denote the structure CH(G , δk

vmin),
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where vmin is the least element of V with respect to ⩽ and δk
vmin ∶ V → H is the k-delta func-

tion on V , de�ned for all v ∈ V by

δk
vmin ∶ v ↦

⎧⎪⎪⎨⎪⎪⎩

k if v = vmin,
0 otherwise.

For each H and i ∈ H, we also write Ci
H for the class of all C-structures CH(G , γ), with G an

ordered connected graph and γ ∶ V → H a charge function on G with γ(V) = i.

7.2 Similar matrices de�ned by set partitions

�e main challenge for Duplicator in the rank-partition game is to come up with partitions

that satisfy the matrix rank condition: that is, given a pair of partitions, the corresponding

matrices must have the same rank for all possible labellings. In this section we indicate how
this can be done when the game is played on a pair of non-isomorphic C-structures induced
by the sameH-circuit. �e results obtained here will play a key part in our description of the
winning strategy in §7.3.

More speci�cally, we develop a generic matrix construction, based on partitions, and

show that non-isomorphicmatrices arising fromdistinct partitions of the same set have equal

rank. In fact, we prove a stronger statement and show that for any pair of such partitions,

the two families of matrices obtained by running over all labelling functions are uniformly

similar, which implies that any two matrices with the same labelling function have the same

rank. To simplify our notation we keep this construction quite generic, and describe parti-

tions and matrices over arbitrary sets (with certain properties). It should be kept in mind

though that these partitions will ultimately be applied to the vertex sets of C-structures, as
noted above.

Our discussion is split into three sections. In §7.2.1 we de�ne the basic partitions as well

as maps between a pair of partitions of the same set. In §7.2.2 we develop technical tools to

establish similarity of matrices obtained by labelling the partitions with elements of a �nite

�eld. Finally in §7.2.3, we brie�y sketch how these tools can be used for matrices with slightly

expanded index sets, more suitable for the situation in §7.3 when we consider partitions of

C-structures.

�roughout this section we work with �nite Abelian groups. If H is such a group, then we
normally write ⊕ to denote the group operation, instead of writing the group additively as
before. �e reason is that we frequently have to consider expressions that involve both arith-

metic over H as well as arithmetic over a �nite �eld, with standard �eld operations + and ⋅.
In this case, we write i ⊖ j ∶= i ⊕ − j, where i and j are elements of H and − j is the inverse
of j. Finally, we write ⊕ (a slightly larger version of ⊕) to denote a “summation” operator,
representing the cumulative application of ⊕ over a set of terms from H. For instance, if
X = {h1, . . . , hm} ⊆ H, then we write⊕m

i=1 hi ∶= h1 ⊕ ⋅ ⋅ ⋅ ⊕ hm.

7.2.1 Basic partitions

LetH be a �nite Abelian group of cardinality q > 0 with group operation⊕. Let p be a prime
number with (p, q) = 1 and let X be a �nite set of cardinality d > 2, where d is chosen such
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that

qd−2 ≡ 1 (mod p). (∗)

For instance, by taking d = p + 1 we get qd−2 = qp−1 ≡ 1 (mod p), by Fermat’s little theorem.
For each k ∈ H, let Fk ∶= (X → H)k = { f ∈ (X → H) ∣ f (A) = k}, and write Nk ∶= Fk∪̇X.
Observe that for any k ∈ H, ∥Fk∥ = qd−1. For f , g ∶ X → H, we write f ⊖ g and f ⊕ g, to
denote the functions x ↦ f (x)⊖ g(x) and x ↦ f (x)⊕ g(x), respectively, like we did in §7.1.

In this section we describe ways to partition the set Nk × Nk . Recall that a partition P of a
set A is a collection of mutually disjoint and non-empty subsets of A (called blocks) whose
union is all of A. If P is such a partition and a ∈ A, then we write [[a]]P to denote the block
containing a.

De�nition 7.11 (Partition blocks). For k ∈ H, de�ne

(i) Γkh ∶= {( f , g) ∈ Fk × Fk ∣ f ⊖ g = h} ⊂ Nk × Nk , for each h ∈ F0; and

(ii) Ωk
x ,i ∶= {( f , x) ∈ Fk × X ∣ f (x) = i} ⊂ Nk × Nk , for each x ∈ X and i ∈ H.

We also write (Ωk
x ,i)t ∶= {(x , f ) ∣ ( f , x) ∈ Ωk

x ,i} to denote the “transpose” of Ωk
x ,i . ∎

It can be seen that for any h1, h2 ∈ F0 it holds that Γkh1 ∩ Γ
k
h2 = ∅ whenever h1 ≠ h2. Also,

it can be seen that ⋃h Γ
k
h = Fk × Fk . Similarly, for all x1, x2 ∈ X and i1, i2 ∈ H, it holds that

Ωk
x1 ,i1 ∩ Ω

k
x2 ,i2 = ∅ whenever (x1, i1) ≠ (x2, i2), and ⋃x ,i Ω

k
x ,i = Fk × X. By putting all the

blocks Γkh , Ω
k
x ,i and (Ωk

x ,i)t together, and adding a trivial partition of the set X×X, we obtain
a partition of the space Nk × Nk as follows.

De�nition 7.12 (Set partitions). If k ∈ H then we write Pk to denote the partition of Nk ×Nk
de�ned by

Pk ∶= {Γkh ∣ h ∈ F0} ∪ {Ωk
x ,i , (Ωk

x ,i)t ∣ x ∈ X , i ∈ H} ∪ {{(x , y)} ∣ x , y ∈ X)}.

∎

We also consider maps between the partitions P0 and Pk , as de�ned here.

De�nition 7.13 (Maps between partitions). For k ∈ H we write φk ∶ P0 → Pk to denote the
bijection de�ned by

φk ∶ Γ0h ↦ Γkh ∀h ∈ F0,
φk ∶ Ω0x ,i ↦ Ωk

x ,i ∀x ∈ X ∀i ∈ H,
φk ∶ (Ω0x ,i)t ↦ (Ωk

x ,i)t ∀x ∈ X ∀i ∈ H,
φk ∶ {(x , y)} ↦ {(x , y)} ∀x , y ∈ X .

∎



7.2. Similar matrices de�ned by set partitions 121

7.2.2 Matrices de�ned over partitions

We now consider matrices over the prime �eld GFp obtained by labelling the blocks of the
partition Pk by elements of [0, p− 1]. �e idea of de�ning matrices in this way was discussed
in Chapter 6, in relation to the rank-partition game, and our notation here is the same.

Let k ∈ H and consider a labelling γ ∶ Pk → [0, p − 1] of the blocks in Pk with elements of
GFp. �en we write Mk(γ) to denote the Nk × Nk matrix over GFp de�ned by applying the
labelling γ to Pk ; that is,

Mk(γ) ∶ (m, n) ↦ γ([[(m, n)]]Pk),
for all m, n ∈ Nk . Our aim in this section is to prove the following.

�eorem 7.14 (Partition matrices have the same rank). Let k ∈ H. �en for any labelling
γ ∶ P0 → [0, p − 1], the matrices M0(γ) and Mk(γ ○ φ−1k ) have the same rank over GFp.

In proving this theorem, we actually establish a stronger statement. More speci�cally, for

every k ∈ H and z ∈ X we construct a non-singular Nk × N0 matrix Sk,z over GFp such that

Sk,z M0(γ) S−1k,z = Mk(γ ○ φ−1k ),
for any labelling γ of the partitionPk . �is shows that the twomatricesM0(γ) andM0(γ) are
similar, which in turn implies that they have the same rank. Note that each matrix Sk,z does
not depend on the labelling γ. Our construction therefore shows that the two collections of
matrices de�ned by P0 and Pk are pairwise uniformly similar, when indexed by functions in
(P0 → [0, p − 1]).

�e matrices Sk,z will be explicitly constructed as a combination of simpler “A” and “B”
matrices, which we now describe.

De�nition 7.15 (B-matrices). For z ∈ X and k ∈ H, write Bk,z to denote the F0 × F0 matrix
over GFp de�ned by

Bk,z( f , g) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 if f (z) ⊕ k = g(z)
0 otherwise,

for all f , g ∈ F0. ∎

We establish some basic properties of the B-matrices.

Lemma 7.16 (Products of B-matrices). For all z ∈ X and i , j ∈ H, Bi ,zB j,z = Bi⊕ j,z.

Proof. Let f , g ∈ F0 and write
(Bi ,zB j,z)( f , g) = ∑

h∈F0
Bi ,z( f , h)B j,z(h, g)

= ∥{h ∈ F0 ∣ f (z) ⊕ i = h(z) and h(z) ⊕ j = g(z)}∥
(by de�nition of Bk,z)

= ∥{h ∈ F0 ∣ h(z) = f (z) ⊕ i and f (z) ⊕ (i ⊕ j) = g(z)}∥

=
⎧⎪⎪⎨⎪⎪⎩

qd−2 ≡ 1 (mod p) if f (z) ⊕ (i ⊕ j) = g(z),
0 otherwise

= Bi⊕ j,z( f , g). (Bi⊕ j,z a GFp matrix)
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Here we have used the fact that qd−2 ≡ 1 (mod p) by (∗).

Lemma 7.17 (B-matrix transpose). For all z ∈ X and k ∈ H, (Bk,z)t = B−k,z.

Proof. Let f , g ∈ F0. �en

Bk,z( f , g) = 1⇔ f (z) ⊕ k = g(z)
⇔ g(z) ⊕ (−k) = f (z)
⇔ B−k,z(g , f ) = 1.

Hence (Bk,z)t( f , g) ∶= Bk,z(g , f ) = B−k,z( f , g).

De�nition 7.18 (A-matrices). For z ∈ X and k ∈ H, let Ak,z ∶= Bk,z − B0,z + I, where I is the
F0 × F0 identity matrix. ∎

�e following lemma shows that eachmatrix Ak,z is orthogonal, with inverse explicitly given
by (Ak,z)−1 = Atk,z = A−k,z .

Lemma 7.19 (Orthogonality of A-matrices). Ak,z At
k,z = Ak,z A−k,z = I.

Proof. �e transpose operation respects addition, so by Lemma 7.17,

Atk,z = Btk,z − Bt0,z + It = B−k,z − B0,z + I = A−k,z .

Hence

Ak,zA−k,z = (Bk,z − B0,z + I)(B−k,z − B0,z + I)
= (Bk,zB−k,z − Bk,zB0,z + Bk,z) − (B0,zB−k,z − B0,zB0,z + B0,z) + (B−k,z − B0,z + I)
= (B0,z − Bk,z + Bk,z) − (B−k,z − B0,z + B0,z) + (B−k,z − B0,z + I) (Lemma 7.16)

= I.

From now on, �x k ∈ H and z ∈ X and let γ ∶ P0 → [0, p − 1] be a labelling of the partition
P0. Consider the two matrices M0(γ) and Mk(γ ○ φ−1k ), which are indexed by N0 × N0 and
Nk × Nk , respectively. Our aim is to map M0(γ) to Mk(γ ○ φ−1k ) by applying the A- and B-
transformations, which are indexed by F0×F0. To ensure that all matrices have the same row
and column index sets, we will map M0(γ) to a matrix obtained by �rst applying a suitable
N0 × Nk invertible linear transformation toMk(γ ○ φ−1k ), as we describe next.

Let πz,k ∶ F0 → Fk be the bijection de�ned for all f ∈ F0, g ∈ Fk by

πz,k( f ) = g ∶⇔ f (z) ⊕ k = g(z) and f (x) = g(x) for all x ≠ z.

Write Pk,z for the permutation matrix representation of πk,z . �at is, Pk,z is the F0 × Fk
permutation matrix de�ned for all f ∈ F0 and g ∈ Fk by Pk,z( f , g) = 1 if and only if πz,k( f ) =
g. Let Qk,z denote the direct sum of Pk,z and IX , where IX is the X × X identity matrix. �at
is,

Qk,z ∶= (

Fk X

F0 Pk,z 0

X 0 IX
).
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Observe that Qk,z is indexed by N0 × Nk and its inverse Q−1
k,z is indexed by Nk × N0. We

now consider the matrices M0 ∶= M0(γ) and Mk ∶= Qk,z Mk(γ ○ φ−1k ) Q−1
k,z , which are both

indexed by N0 × N0. We can write these as

M0 = (

F0 X

F0 U0 R0
X S0 W0

) and Mk = (

F0 X

F0 Uk Rk
X Sk Wk

).

We observe that the twomatricesM0 andMk are identical in the two submatrices indexed by
F0 × F0 and X ×X, respectively. �at is,W0 =Wk andU0 = Uk (and we writeW ∶=W0 =Wk
andU ∶= U0 = Uk). �e �rst equality is clear, since both φk and πk,z act as identity on X ×X.
For the second equality, consider a pair of functions f , g ∈ F0. From the de�nition of πk,z it
holds for any h ∈ F0 that ( f , g) ∈ Γ0h if and only if (πk,z( f ), πk,z(g)) ∈ Γkh . Hence,

Uk( f , g) = γ(φ−1k,z([[(πk,z( f ), πk,z(g))]]Pk))
= γ([[( f , g)]]P0)
= U0( f , g).

Similarly, it can also be seen that the twomatrices S0 and Sk are equivalent in all rows indexed
by x ∈ X with x ≠ z. �e same holds for the two matrices R0 and Rk , column-wise.
In summary, we see that the two matrices M0 and Mk are everywhere equal apart from

(potentially) the rows indexed by z ∈ X in each matrix (the {z} × F0 submatrices) or the
columns indexed by z ∈ X in each matrix (the F0 × {z} submatrices).

It remains to show that we can apply the A- and B-transformations to mapM0 toMk . To do
that, we consider a series of lemmas, starting with the following.

Lemma 7.20. Ak,zR0 = Rk .

Proof. For x ∈ X, let C0,x and Ck,x denote the columns indexed by x in R0 and Rk , respec-
tively. We will show that for each x ∈ X,

Ak,zC0,x = Ck,x ,

which will conclude the proof. Observe that for all x ≠ z, C0,x = Ck,x , as discussed earlier. It
is only at the columns C0,z and Ck,z that the twomatrices potentially di�er. In order to prove
the lemma, we now consider two cases: columns indexed by x when x ≠ z and columns
indexed by z.

For the �rst case, let C = C0,x = Ck,x be a column indexed by an element x ≠ z. �e column
C can be written as a linear combination

C = ∑
i∈H

σiDi ,

where each Di is a (0, 1)-column and σi ∈ [0, p− 1]. More speci�cally, each Di is the column
vector that corresponds to the partition block Ω0x ,i = {( f , x) ∈ F0 × X ∣ f (x) = i} and
σi ∶= γ(Ω0x ,i) is the value assigned to Ω0x ,i by the labelling γ. By linearity, it will be su�cient
to consider each column vector Di ; that is, to show that Ak,zDi = Di for any i ∈ H.



7.2. Similar matrices de�ned by set partitions 124

Claim 6. For any i ,m, n ∈ H, Bm,zDi = Bn,zDi .

Proof of claim. Consider i ,m ∈ H and f ∈ F0 and write

(Bm,zDi)( f ) = ∑
g∈F0

Bm,z( f , g)Di(g)

= ∥{g ∈ F0 ∣ f (z) ⊕m = g(z) ∧ g(x) = i}∥
= qd−3.

�is shows that the value of (Bm,zDi)( f ) does not depend on eitherm or f , so in particular
for any n ∈ H, (Bm,zDi − Bn,zDi)( f ) = qd−3 − qd−3 = 0.

From the claim, it now follows that

Ak,zDi = (Bk,z − B0,z + I)Di = (Bk,zDi − B0,zDi) + Di = Di ,

as required.

Now for the second case, consider the columns C0 ∶= C0,z and Ck ∶= Ck,z indexed by z in R0
and Rk , respectively. For i ∈ H we de�ne a pair of (0, 1)-vectors

D0i ( f ) =
⎧⎪⎪⎨⎪⎪⎩

1 if f (z) = i ,
0 otherwise,

and

Dk
i ( f ) =

⎧⎪⎪⎨⎪⎪⎩

1 if f (z) ⊕ k = i ,
0 otherwise,

for all f ∈ F0. As before, we can express each column C j, j ∈ {0, k}, as a linear combination
of D j

i -vectors. Hence, it will su�ce by linearity to show for each i ∈ H that Ak,zD0i = Dk
i . To

do that, �x an i ∈ H and write

(Bk,zD0i )( f ) = ∑
g∈F0

Bk,z( f , g)D0i (g)

= ∥{g ∈ F0 ∣ f (z) ⊕ k = g(z) ∧ g(z) = i}∥
= ∥{g ∈ F0 ∣ f (z) ⊕ k = g(z) = i}∥

=
⎧⎪⎪⎨⎪⎪⎩

qd−2 if f (z) ⊕ k = i ,
0 otherwise.

Hence,

((Bk,z − B0,z + I)D0i ))( f ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

qd−2 if f (z) ⊕ k = i ,
−qd−2 + 1 if f (z) = i ,
0 otherwise.
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Now considering that qd−2 ≡ 1 (mod p), we see that

(Ak,zD0i )( f ) = Dk
i ( f ) =

⎧⎪⎪⎨⎪⎪⎩

1 if f (z) ⊕ k = i ,
0 otherwise.

�e proof of the following lemma is entirely analogous to the proof of Lemma 7.20.

Lemma 7.21. S0 A−1k,z = Sk .

We now consider a transformation of the square matrix U .

Lemma 7.22. Ak,z U A−1k,z = U.

Proof. Write U = ∑h∈F0 σhUh, where each Uh is the (0, 1)-matrix that corresponds with the
partition block Γh = {( f , g) ∈ F0 × F0 ∣ f ⊖ g = h} and σh ∶= γ(Γh) is the value assigned to
Γh by the labelling γ. By linearity, it will be su�cient to consider the matrices Uh; that is, to
show that

Ak,z Uh A−1k,z = Uh ,

for each h ∈ F0.
Claim 7. For all m ∈ H, Bm,zUh = UhBm,z.

Proof of claim. Consider f , g ∈ F0 and check:

(Bm,zUh)( f , g) = ∑
e∈F0

Bm,z( f , e)Uh(e , g)

= ∥{e ∈ F0 ∣ f (z) ⊕m = e(z) ∧ e ⊖ g = h}∥

=
⎧⎪⎪⎨⎪⎪⎩

1 if f (z) ⊕m = g(z) ⊕ h(z),
0 otherwise,

and

(UhBm,z)( f , g) = ∑
e∈F0

Uh( f , e)Bm,z(e , g)

= ∥{e ∈ F0 ∣ f ⊖ e = h ∧ e(z) ⊕m = g(z)}∥

=
⎧⎪⎪⎨⎪⎪⎩

1 if f (z) ⊕m = g(z) ⊕ h(z),
0 otherwise.

By this claim, it follows that Bm,zUh = UhBm,z . Hence for all m, n ∈ H,

Bm,z Uh Bn,z = Bm,z(Bn,zUh) = Bm⊕n,z Uh ,

using Lemma 7.16. Expanding Ak,z into a sum of B-matrices, we can �nally conclude:

Ak,z Uh A−1k,z = (Bk,z − B0,z + I)Uh(B−k,z − B0,z + I)
= (Bk⊖k,z − Bk⊕0,z + Bk,z − B0⊖k,z + B0⊕0,z − B0,z + B−k,z − B0,z + I)Uh

= Uh .
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We are now �nally ready to prove the main theorem of this section.

Proof of �eorem 7.14. We construct an invertible Nk × N0 linear transformation acting on
M0(γ). Let

Tk,z ∶= (

F0 X

F0 Ak,z 0

X 0 IX
) = (

F0 X

Bk,z − B0,z + IF0 0

0 IX
),

where IF0 and IX denote the F0 × F0 and X × X identity matrices over GFp, respectively.
Observe that

T−1k,z = (

F0 X

F0 A−1k,z 0

X 0 IX
) = T−k,z .

Multiplying together Tk,z M0 T−1k,z in block form, we get

Tk,z M0 T−1k,z = ( Ak,z U A−1k,z Ak,z R0
S0 A−1k,z W )

= ( U Rk
Sk W ) = Mk ,

where the second equality follows from lemmas 7.20, 7.21 and 7.22. Finally, this allows us to

conclude that the matrices M0(γ) and Mk(γ ○ φ−1k ) are similar for any γ ∶ P0 → [0, p − 1],
with the similarity transformation given by the Fk × F0 matrix

Sk,z ∶= Q−1
k,zTk,z .

As similar matrices have the same rank, the theorem now follows.

7.2.3 Extended partitions

�e analysis of the previous sections can also be applied to partitions of Nk × Nk , where we
now de�ne Nk ∶= Fk∪̇(X × H). In this case, we simply extend the action of each f ∈ Fk to
elements of X × H, by setting f ((x , i)) ∶= f (x), for all (x , i) ∈ X × H. All partitions and
bijections of partitions are then de�ned with respect to this extended action of f on X × H.
In particular, note that for each x ∈ X and i ∈ H, there will be ∥H∥ blocks in the partition of
the form

Ω
k
(x , j),i ∶= {( f , (x , j)) ∈ Fk × X ∣ f (x) = i} ⊂ Nk × Nk ,

for j ∈ H. All the transformation matrices can be de�ned as before, except that we replace
all occurrences of the X × X identity matrix with the (X ×H) × (X ×H) identity matrix.
Similarly, we can consider partitions of Zk×Zk , where Zk ∶= Nk∪̇Y and Y is a non-empty

�nite set. LetDk(X ,H,Y) denote the partition of Zk × Zk obtained by

• partitioning Nk × Nk according to Pk from before;

• partitioning Y × Fk into blocks Πy ∶= {(y, f ) ∣ f ∈ Fk} for each y ∈ Y ;
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• partitioning Fk × Y into blocks Πty ∶= {( f , y) ∣ f ∈ Fk} for each y ∈ Y ; and

• placing all other elements into singleton blocks.

We can de�ne a bijection φk ∶ D0(X ,H,Y) → Dk(X ,H,Y) just like before, except that
we map Πy ↦ Πy and Π

t
y ↦ Πty for each y ∈ Y , and map each singleton block to the

corresponding singleton block. Overloading our notation, we write Mk(γ) to denote the
Zk × Zk matrix over GFp de�ned by applying a labelling γ ∶ D0(X ,H,Y) → [0, p − 1] to the
partition. By adapting the proof of �eorem 7.14 to account for the new blocks, we get the

following corollary.

Corollary 7.23 (Rank of extended partition matrices). Let k ∈ H. �en for all labellings
γ ∶ D0(X ,H,Y) → [0, p − 1], the matrices M0(γ) and Mk(γ ○ φ−1k ) have the same rank over
GFp.

�is corollary will play a key role in the next section, where we apply the D-partition to the
vertex set of a C-structure.

7.3 Application of the game method

In this section we apply the game method to show that for each prime p, there is a �nite
Abelian group H for which it holds that for any i ∈ H, there is no �xed sentence ofRω

p;2 that

de�nes the class Ci
H . �is is stated more formally by the following theorem.

�eorem7.24 (Gamewinning strategy). Let p and q be distinct primes andwrite H = Z/(qZ).
�en for each c ∈ H and all k ≥ 2, there is a graph G for which it holds that Duplicator has a
winning strategy in the k-pebble 2-ary rank-partition game on C0H(G) and CcH(G) over GFp.

�e winning strategy that we describe is obtained by combining the set-partition scheme

developed in §7.2 with a procedure for maintaining at every round in the game a mapping

π from C0H(G) to CcH(G) which agrees with all currently pebbled positions and is almost
an isomorphism. �at is, at each round in the game there will only be a small subset X ⊂
C0H(G) where the substructures induced by X and π(X) are not isomorphic. To ensure that
Spoiler is unable to pinpoint the actual di�erence between the two structures, Duplicator

keeps moving around the violating regions X and π(X), to avoid the pebbled elements in
each of the two structures. By playing in this way, Duplicator can at each round satisfy the

algebraic condition of the rank-partition game and ensure that Spoiler is unable to �nd the

di�erence between the two structures, no matter where he chooses to place his pebbles.

To explain this game strategy in a little more detail, recall that the structures C0H(G) and
CcH(G) are constructed from H-circuits (G , δ0vmin) and (G , δc

vmin), respectively, where vmin
denotes the ⩽-least vertex in V . For c ≠ 0, these two circuits are exactly the same, except
that the �rst one has nil charge on every vertex while the second one has charge c on the
initial vertex vmin and nil charge everywhere else. At every round in the rank-partition game
on C0H(G) and CcH(G), the almost-isomorphism π kept by the Duplicator will be chosen so
that π(C0H(G)) and CcH(G) disagree only on the elements of the graph gadget induced by
some vertex u ∈ V . It can be shown that such a mapping π corresponds to a redistribution of
charge on (G , δc

vmin), by moving c units of charge from vmin to u. In these terms, Duplicator’s
winning strategy is to continuallymove the c-charge around the graphG, in order to hide the



7.3. Application of the game method 128

di�erence between C0H(G) and CcH(G) from the Spoiler. To ensure that the charge can always
be moved around without violating the partial isomorphism de�ned by the current pebble

positions, Duplicator will simultaneously play a separate graph-searching game on G, called
the “cops-and-robber game”. By choosing the graph G in a certain way (that is, such that it
has large enough tree-width), it can be ensured that in the cops-and-robber game on G the
robber always has a strategy to evade capture. By simulating the movement of the cops in the

game on G according to the placement of pebbles in the rank-partition game on C0H(G) and
CcH(G), Duplicator can use the winning strategy of the robber to decide where to shi� the
charge around the H-circuit on G. �is game strategy can now be summarised as follows:

1. At the beginning of each round, Duplicator has an H-redistribution t ∶ V ×V → H on
G, for which there is a vertex u such that (δc

vmin)
t = δc

u.

2. �e redistribution t will be used to construct a bijection π ∶ C0H(G) → CcH(G), which
is an isomorphism everywhere apart from the elements of the graph gadget induced

by u.

3. �e mapping π is then used to construct set partitions of the two structures, using the
techniques developed in §7.2. By results shown there, these partitions will satisfy the

algebraic requirements of the game.

4. At the end of the round, Duplicator updates her H-redistribution t, so that it moves
the charge c from u to u′, where u′ is a safe point for robber in the cops-and-robber
game on G, starting with robber on vertex u.

�e method of constructing a winning strategy in a pebble game based on a game strategy

in the cops-and-robber game was originally described by Dawar and Richerby [20] (see also

Atserias et al. [4] for further applications of this idea). Our contribution here is to extend

this method to work in a highly uniform setting, with respect to possible moves in the cops-
and-robber game, as we will explain in further detail later.

�roughout this section, we let p and q be distinct primes and write H = Z/(qZ) to denote
the additive group of integers modulo q, with group operation ⊕. If G = (V , E , ⩽) is an
ordered and connected graph, then we write vmin to denote the ⩽-least element in V , as
before. Furthermore, for each c ∈ H, we write γc ∶= δc

vmin to denote the charge function that
assigns c to vmin and is zero everywhere else.
Our presentation is organised into four main parts. In §7.3.1 we recall the de�nition of

tree-width and the cops-and-robber game. We then prove the existence of graphs that have

arbitrarily large tree-width in addition to certain uniformity and regularity conditions, which

are required for the proof of�eorem 7.24. In §7.3.2 we de�neH-redistributions that result in
the shi�ing of charge from one vertex to another on a circuit, and show that such functions

induce bijections between a pair of C-structures. �en in §7.3.3 we apply the set partitions
developed abstractly in §7.2 to the C-structures C0H(G) and CcH(G). By the results of §7.2, it
follows that the resulting partitions will satisfy the algebraic condition of the rank-partition

game. All the above will then be tied together in §7.3.4, where we describe the actual winning

strategy of the Duplicator in full detail. Finally, in §7.3.5, we show that the classes Ci
H can be

axiomatised in FORq for each i ∈ H. Combined with �eorem 7.24, this �nally gives us a
proof of �eorem 7.1, which is the main result of this chapter.
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7.3.1 Tree-width and the cops-and-robber game

Tree-width is a graph parameter that, broadly speaking, measures how closely a graph re-
sembles a tree. For instance, the tree-width of a tree, of a cycle and of the n × n grid graph is
one, two and n, respectively. We will write tw(G) to denote the tree-width of a graph G. We
will not need a formal de�nition of tree-width here (for details, see for instance Diestel [22,

Chapter 12]). Instead, we rely on the following game characterisation of tree-width, due to

Seymour and�omas [62].

�e k-cops-and-robber game is played by two players, one of whom controls a set of k
cops that are attempting to catch a robber, which is controlled by the other player. At the
beginning of each round in the game, the robber is sitting on some vertex v on the graph.
�e cops player then moves some or all of the cops from their current position (either on or

o� the game board G) and places them on vertices of the graph. �e cops that are not being
moved in that round are said to be stationary. While the chosen cops aremoving to their new
positions, the robber can simultaneously move along any path in the graph, starting with his

current position, provided that there are no stationary cops on that path. �e cops player

wins the game if at some round, the robber is unable to �ee without running into a cop. It is

shown by Seymour and �omas [62] that the cops player has a strategy to win the game on

a graph G using k + 1 cops if and only if G has tree-width at most k.

De�nition 7.25 (Uniform winning strategies). Let d , k ≥ 1 and let G be a graph. Suppose
that at some round in the k-cops-and-robber game on G, the robber is sitting on a vertex v
and the cops player prepares to move l ≤ k cops to positions h1, . . . , hl ∈ V , with stationary
cops remaining at positions sl+1, . . . , sk ∈ V . �en we say that robber has a d-uniform escape
route from v to w, with respect to the current placement of cops, if deg(v) ≥ d and there are
d + 1 simple paths

P1 ∶ w11, . . . ,w1m1 ,
⋮

Pd ∶ w1d , . . . ,wdmd ,

Q ∶ v1, . . . , vn = w ,

where n,m1, . . . ,md ≥ 1, such that:

• w11, . . . ,w1d ∈ N(v) are d distinct neighbours of v;

• PiQ is a simple path, for each i ∈ [d];

• each path PiQ avoids the stationary cops.

We say that the robber player has a d-uniform winning strategy in the k-cops-and-robber-
game on G if he can play forever in such a way that at every round in the game, the robber
has a d-uniform escape route from the current position. ∎

Note that, according to this de�nition, while the paths P1, . . . Pd have to be distinct, they are
not necessarily disjoint. �at is, the only assumption is that any two distinct paths start with
di�erent edges — a�er that, they might possibly overlap.

Lemma 7.26. For every k ≥ 1 and d ≥ 4, there is a d-regular connected graph G for which it
holds that robber has a d-uniform winning strategy in the k-cops-and-robber game on G.



7.3. Application of the game method 130

Proof. Consider k ≥ 1 and write X = (V , E) to denote the k × k toroidal graph with vertex
set V = {(i , j) ∣ i , j ∈ [0, k − 1]} and an edge relation de�ned for all (x1, y1), (x2, y2) ∈ V by

(x1, y1)(x2, y2) ∈ E ∶⇔((x1 = x2) ∧ (y1 − y2 ≡ ±1 (mod k)))∨
((y1 = y2) ∧ (x1 − x2 ≡ ±1 (mod k))).

For v ∈ V , write va , vb , vc , vd for the four neighbours of v in X. For d ≥ 4 and v ∈ V , let
Gd(v) denote the graph obtained from the complete graph on

{(v , i) ∣ i ∈ [d − 3]} ∪̇ {(v ,w) ∣ w ∈ NX(v)}

by removing the two edges (v , va)(v , vb) and (v , vc)(v , vd). We refer to vertices of the form
(v , i), for i ∈ [d − 3], as internal nodes and vertices of the form (v ,w), for w ∈ NX(v), as
external nodes. It is clear by this construction that each internal node has degree d while each
external node has degree d − 1. Finally, let G be the graph obtained from the union of all the
Gd(v), for v ∈ V , by adding an edge between (v ,w) and (w , v), whenever vw ∈ E. By this
construction it follows that G is regular of degree d.
We claim that the robber player has a d-uniform winning strategy in the k-cops-and-

robber game on G. First of all, we note that the toroidal graph X has tree-width k (see e.g.
Bodlaender [10, §13.2]), which implies that robber has a winning strategy in the game on X
with k cops. Awinning strategy for the robber player in the game onG is obtained bymoving
the robber at each turn according to the winning strategy on X, �nally coming to a rest at
some internal node. More speci�cally, if in the game on G, the robber is sitting on some
vertex in component Gd(v) and the cops are located in components Gd(v1), . . . ,Gd(vm),
m ≤ k, then the robber player consults her winning strategy in the game on X, with the X-
robber on vertex v and the X-cops on vertices v1, . . . , vm (possibly with more than one cop
on a single vertex). If, according to the winning strategy on X, the X-robber would move
from v tow ∈ V , then the G-robber is moved accordingly from its current position to one of
the internal nodes of the component Gd(w). By playing in this way, it can be ensured that
the robber can evade the k cops on G forever.
Moreover, it can be seen that this game strategy is d-uniform. To show this, suppose at

some point the robber is sitting on some internal node (v , i) in component Gd(v), v ∈ V .
Suppose, furthermore, that in response to an advancement of the cops, the X-robber would
move from v to w along a path that starts with an edge vu ∈ E. In the game on G, the
robber would therefore be able to �ee the cops by moving along a path that goes through

the component Gd(u). �e get from Gd(v) to Gd(u) this path has to go through the edge
(v , u)(u, v) ∈ E(G). To reach the vertex (v , u), it is clear that the G-robber can leave its
current position (v , i) via any of its neighbours, either by moving directly to (v , u) or by
passing through some of the other vertices in Gd(v), in a path that has length no more than
two. �is shows that this winning strategy is d-uniform, as claimed.

7.3.2 Some properties of H-redistributions

If t ∶ V × V → H is an H-redistribution on an ordered graph G = (V , E , ⩽) and v ∈ V , then
we write ∆t,v ∶ E(v) → H for the function de�ned by ∆t,v(vw) ∶= t(v ,w), for all vw ∈ E(v).
We say that t moves c to u if γt

c ∶= (δc
vmin)

t = δc
u.
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De�nition 7.27 (Maps induced by redistributions). Let t ∶ V ×V → H be a redistribution on
G that moves c to u, for c ∈ H and u ∈ V . �en for anyw ∈ N(u), we write πt,u,w ∶ C0H(G) →
CcH(G) for the function de�ned as follows.

• Outer vertices. For all v , x ∈ V with vx ∈ E:

πt,u,w ∶ (v , x , i) ↦ (v , x , i ⊕ t(v , x)) = (v , x , i ⊕ ∆t,v(vx)).

• Inner vertices not induced by u. For all v ∈ V ∖ {u} and f ∈ I(v , 0):

πt,u,w ∶ f ↦ f ⊕ ∆t,v .

• Inner vertices induced by u. Finally, for all f ∈ I(u, 0):

πt,u,w ∶ f ↦ f ⊕ ∆t,u ⊕ σ c
uw ,

where σ c
uw ∶ E(v) → H is the c-delta function on E(v), de�ned for all e ∈ E(v) by

δc
uw ∶ e ↦

⎧⎪⎪⎨⎪⎪⎩

c if e = uw ,
0 otherwise.

∎

It is clear by this de�nition that πt,u,w is a bijection that preserves the preorder ≼. Further
properties of this mapping are summarised by the following lemma, whose proof follows

directly from the above de�nition.

Lemma 7.28. Let t ∶ V × V → H be a redistribution on G that moves c to u. �en for any
w ∈ N(u) it holds that πt,u,w is an isomorphism between C0H(G) ∖ I(u, γ0(u)) and CcH(G) ∖
I(u, γc(u)).

7.3.3 Set partitions on C-structures

We now apply the abstract partition scheme de�ned in §7.2 to the structures C0H(G) and
CcH(G) and study some properties of the resulting partitions. Here we let G = (V , E , ⩽) be
an ordered and connected d-regular graph, where the integer d ≥ 4 is chosen so that qd−2 ≡ 1
(mod p).

Consider a vertex u ∈ V and let uw be an edge incident at u. Let t ∶ V × V → H on G
be a redistribution which moves c to u, and let πt,u,w (as in De�nition 7.27) denote the cor-
responding partial isomorphism with respect to t, u and w. Write F0 = I(u, γ0(u)) and
Fc = I(u, γc(u)) to denote the sets of inner vertices induced by u in C0H(G) and CcH(G),
respectively. By letting X ∶= E(u) and Y ∶= V(C0H(G)) ∖ F0, we obtain

Pt,u,w ∶= D0(X ,H,Y),
Qt,u,w ∶= Dc(πt,u,w(X),H, πt,u,w(Y)), and
ft,u,w ∶= πt,u,w ○ φc,uw ∶ Pt,u,w → Qt,u,w ,

where D0(X ,H,Y), Dc(πt,u,w(X),H, πt,u,w(Y)) and φc,uw are de�ned as in §7.2. Here, the
action of πt,u,w is extended to sets in the obvious way. Observing that ∥X∥ = d, we can apply
Corollary 7.23 and get the following lemma.
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Lemma7.29. For all labellings γ ∶ Pt,u,w → [0, p−1] it holds that rank(MPt ,u ,w
γ ) = rank(MQt ,u ,w

γ○ f −1t ,u ,w
).

At this point it will be useful to further analyse the structure of the partitionsPt,u,w andQt,u,w .
First of all, observe that if x and y are elements of C0H(G) and neither is an inner vertex from
F0, then [[(x , y)]]Pt ,u ,w = {(x , y)} and ft,u,w simply agrees with the partial isomorphism
πt,u,w . More formally, it holds that

ft,u,w([[(x , y)]]Pt ,u ,w) = [[(πt,u,w(x), πt,u,w(y))]]Qt ,u ,w = {(πt,u,w(x), πt,u,w(y))},

for all x , y ∈ V(C0H(G)) ∖ F0. We refer to singleton blocks of this form as trivial blocks.
On the other hand, when either or both of x and y are in F0, then the corresponding block
[[(x , y)]]Pt ,u ,w will always contain more than one element. Such blocks are called non-trivial
blocks, and they come in three di�erent forms:

(T1) For all (u,w , i) ∈ B(u,w) and f ∈ F0, we have

[[((u,w , i), f )]]Pt ,u ,w = {((u,w , i), g) ∣ g(uw) = f (uw)} and
[[( f , (u,w , i))]]Pt ,u ,w = {(g , (u,w , i)) ∣ g(uw) = f (uw)}.

(T2) For x ∈ Y and f ∈ F0, we have

[[(x , f )]]Pt ,u ,w = {x} × F0 and [[( f , x)]]Pt ,u ,w = F0 × {x}.

(T3) Finally, for f , g ∈ F0, with f ⊖ g = h, we have

[[( f , g)]]Pt ,u ,w = {( f ′, g′) ∣ f ′, g′ ∈ F0 and f ′ ⊖ g′ = f ⊖ g = h}.

From these de�nitions, it can be seen that each block of the two partitions consists of pairs of

elements that all realise the same atomic type in the respective structure C0H(G) or CcH(G).
Similarly, it can be seen from the de�nition that the mapping ft,u,w respects atomic types.
More formally, for each P ∈ Pt,u,w it holds that:

• atp(a⃗, C0H(G)) = atp(a⃗′, C0H(G)), for all a⃗, a⃗′ ∈ P;

• atp(b⃗, CcH(G)) = atp(b⃗′, CcH(G)), for all b⃗, b⃗′ ∈ ft,u,w(P); and

• atp(a⃗, C0H(G)) = atp(b⃗, CcH(G)), for all a⃗ ∈ P and b⃗ ∈ ft,u,w(P).

All these observations can be summarised as follows.

Lemma 7.30 (Properties of the partitions). For all P ∈ Pt,u,w and all (x1, x2) ∈ P, (y1, y2) ∈
ft,u,w(P), the mapping de�ned by x1 ↦ y1 and x2 ↦ y2 is a partial isomorphism from C0H(G)
to CcH(G). Furthermore, for all x , y ∈ V(C0H(G)) ∖ F0, it holds that [[(x , y)]]Pt ,u ,w = {(x , y)}
and

ft,u,w({(x , y)}) = {(πt,uw(x), πt,uw(y))} ∈ Qt,u,w .
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Lemma 7.30 shows that if, at any round in the rank-partition game on C0H(G) and CcH(G),
Duplicator responds to a challenge by Spoiler with partitions Pt,u,w and Qt,u,w , then any
placement of pebbles that can be made over those partitions will result in a partial isomor-

phism, with respect to the two pairs of pebbles. It remains to be shown, however, that the

Duplicator can subsequentlymove the charge c onG from u to another vertex u′ in away that
the resulting π-bijection respects the pebbled positions onPt,u,w andQt,u,w . �is, essentially,
is what the next lemma claims.

Lemma 7.31. For any non-trivial block P ∈ Pt,u,w and all (x1, x2) ∈ P, (y1, y2) ∈ ft,u,w(P),
there is a function ρ ∶ E(u) → H for which it holds that:

(i) ρ(E(u)) = c;

(ii) if s ∶ V × V → H is a redistribution on G that moves c to some vertex v and satis�es
s(u, x) = t(u, x) ⊕ ρ(ux), for all ux ∈ E(u), then for any v′ ∈ N(v) it holds that

πs,v ,v′(x1) = y1 and πs,v ,v′(x2) = y2.

Here the intuition is that ρ(uw) should specify the amount of charge that should be pushed
out of the u-gadget via uw, for each uw ∈ E(u).

Proof. Consider a function ρ ∶ E(u) → H and let s ∶ V × V → H be a redistribution on
G that moves c to some vertex v and satis�es s(u, x) = t(u, x) ⊕ ρ(ux), for all ux ∈ E(u).
Observe that by de�nition, ∆s,u(ux) ∶= s(u, x) = t(u, x) ⊕ ρ(ux) = ∆t,u(u, x) ⊕ ρ(ux).
Hence, ∆s,u = ∆t,u ⊕ ρ. Also observe that for any v′ ∈ N(v), the map πs,v ,v′ acts on the outer
vertices in E(u) ×H by

(u, x , i) ↦ (u, x , i ⊕ ∆s,u(ux)) = (u, x , i ⊕ ∆t,u(ux) ⊕ ρ(ux)),
and acts on the inner vertices in F0 = I(u, γ0(u)) by

f ↦ f ⊕ ∆s,u = f ⊕ ∆t,u ⊕ ρ.

Let P ∈ Pt,u,w be a non-trivial block. Consider the following cases, according to the type of
P.

(T1) Suppose P = [[((u, x , i1), f )]]Pt ,u ,w . Consider ((u, x , i1), g1) ∈ P and ((u, x , i2), h2) ∈
ft,u,w(P), where h2 = g2 ⊕ ∆t,u, i2 = i1 ⊕ ∆t,u(ux) and g1(ux) = g2(ux). In this case,
taking ρ ∶= g2⊖ g1 will be su�cient, as πs,v ,v′ ∶ g1 ↦ g1⊕∆t,u ⊕ ρ = g2⊕∆t,u = h2, and

πs,v ,v′ ∶ (u, x , i1) ↦ (u, x , i1 ⊕ ∆t,u(ux) ⊕ ρ(ux))
= (u, x , i2 ⊕ (g2(ux) ⊖ g1(ux)))
= (u, x , i2),

for any v′ ∈ N(v), as required.

(T2) Suppose P = [[(x , f )]]Pt ,u ,w , where x ∈ Y and f ∈ F0. Consider (x , g1) ∈ P and
(πt,u(x), g2 ⊕∆t,u) ∈ ft,u,w(P). In this case, taking ρ ∶= g2 ⊖ g1 will be su�cient, with
an argument similar to above.

(T3) Finally, suppose P = [[( f , g)]]Pt ,u ,w , where f , g ∈ F0 and f⊖g = h. Consider ( f1, g1) ∈ P
and ( f2, g2) ∈ ft,u,w(P), with f1 ⊖ g1 = f2 ⊖ g2 = h. It follows that f2 ⊖ f1 = g2 ⊖ g1.
Hence, it su�ces to consider ρ ∶= ( f2 ⊖ f1) ⊖ ∆t,u = (g2 ⊖ g1) ⊖ ∆t,u.
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7.3.4 Game strategy

Let p and q be distinct primes and write H = Z/(qZ), as before. Consider k ≥ 2 and let
d ≥ 4 be an integer such that qd−2 ≡ 1 (mod p). Finally, let G = (V , E , ⩽) be an ordered
and connected d-regular graph that satis�es the conditions of Lemma 7.26. �at is, in the
k-cops-and-robber game on G, the robber will always have a d-uniform strategy to evade
capture by the cops. By that same lemma, such a graph is guaranteed to exist.

In the following we put together the various technical results established previously and

describe a winning strategy for Duplicator in the k-pebble 2-ary rank partition game on
C0H(G) and CcH(G) over GFp, with c ∈ H. �is is trivial when c = 0 so assume c ≠ 0. To
describe the game strategy, we will use an induction hypothesis which is stronger than the

necessary partial isomorphism claim. �at is, we claim thatDuplicator can play in such away

that a�er each round in the game, (a) the map de�ned by the currently pebbled elements

on the two structures is a partial isomorphism and (b) there is a vertex u ∈ V and an H-
redistribution t ∶ V × V → H on G for which it holds that:

(i) γt
c ∶= (δc

vmin)
t = δc

u;

(ii) the bijection πt ∶ C0H(G) → CcH(G) induced by t respects the currently pebbled ele-
ments on the two structures; and

(iii) the robber player has a winning strategy in the k-cops-and-robber game onG, starting
with cops at positions v1, . . . , vm and robber at position u, where v1, . . . , vm denote the
vertices ofG that correspond to those graph gadgets in C0H(G) and CcH(G) that contain
currently pebbled elements, m ≤ l .

�is induction hypothesis not only implies partial isomorphism but also comes with enough

conditions to enable us to describe an inductive winning strategy, as we will show.

Now suppose that at some round in the game, Spoiler picks up a pair of pebbles from C0H(G)
and the corresponding pair of pebbles from CcH(G). Let u ∈ V and t ∶ V ×V → H be objects
satisfying the conditions of the induction hypothesis. If this is the �rst round of the game,

then let u = vmin and let t be the constant-zero function on V × V . Consider an arbitrary
neighbour w of u and write πt,u,w to denote the bijection associated with t, u and w. �en
Duplicator responds to the challenge of Spoiler with partitions Pt,u,w and Qt,u,w , and bijec-
tion ft,u,w ∶ Pt,u → Qt,u, as de�ned in §7.3.3. By Lemma 7.29, the triple (Pt,u,w ,Qt,u,w , ft,u,w)
satis�es the rank condition of the partition game, as required.

Suppose then that Spoiler next chooses a block P ∈ Pt,u,w and places the two chosen
pebbles in C0H(G) on a pair in P and places the corresponding two pebbles in CcH(G) on
a pair in ft,u,w(P). By Lemma 7.30, this placement of pebbles by the Spoiler will result in
positions that preserve the partial isomorphism. �is satis�es condition (a) of the induction

hypothesis.

All that remains then is to show that, based on the resulting game positions, Duplicator

can construct a new transition function t which will satisfy condition (b) of the induction
hypothesis. To do that, Duplicator initiates a k-cops-and-robber game onG, initially with the
robber on u and cops on vertices v1, . . . , vm ∈ V , corresponding to the pebbled positions over
C0H(G) and CcH(G) at the beginning of the round. �at is, the vertices v1, . . . , vm denote that
there are pebbles on C0H(G) in each of graph gadgetsXH(v1, 0), . . . ,XH(vm , 0) and nowhere
else. �e same holds for CcH(G), as the pebbled positions respect the preorder ≼.
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Duplicator then moves the two cops corresponding to the pebbles chosen earlier by

Spoiler to the vertices on G that match the placement of pebbles on C0H(G) and CcH(G). By
assumption onG, this move by the cops yields d distinct paths P1, . . . , Pd , all starting at u, for
the robber to move along to a vertexw. Here, each path Pi goes from u viawi ∈ N(u), where
we write N(u) = {w1, . . . ,wd}. Let ρ ∶ E(u) → H be a function as speci�ed by Lemma 7.31.
Intuitively, the function ρ describes for each edge uwi ∈ E(u) the amount of charge that
should be moved out of u via uwi , as noted earlier. �is gives us a recipe for constructing a
new redistribution s, moving the c units of charge from u to v, as follows:

• Firstly, for each path Pi , i ∈ [d], de�ne a redistribution si ∶ V × V → H by si(x , y) ∶=
ρ(uwi), if (x , y) ∈ Pi , si(x , y) ∶= −ρ(uwi), if (y, x) ∈ Pi , and s(x , y) ∶= 0 everywhere
else. Note that s is well-de�ned in this way, as Pi is a simple path. It can be seen that si
moves ρ(uwi) units of charge from v to w, by following the path Pi in G.

• By combining all the functions si , we now obtain a redistribution s ∶ V × V → H on
G, de�ned by

s(x , y) ∶=
d
⊕
i=1

si(x , y).

�at is, s is obtained at each (x , y) ∈ V × V by accumulating the charge moved from
x to y over all the auxiliary functions si .

Since each Pi , by assumption, does not go through any of the cop positions on G, it follows
that theH-redistribution s respects all the pebble positions on C0H(G) and CcH(G). In partic-
ular, s respects any pebble placement over non-trivial blocks, by Lemma 7.31. Furthermore,
we can see that γsc = δc

w , by design, and the robber player will have a winning strategy in
the cops-and-robber game starting with the cops in their current position and the robber at

w. �is shows that Duplicator has a strategy to play in such a way that the strong induction
hypothesis is satis�ed at the end of each round, which concludes the proof of �eorem 7.24.

7.3.5 Axiomatisation of C-structures in FOR

We conclude this chapter by showing that for any graphG and prime q, the structures C0H(G)
and CcH(G) can be distinguished in �rst-order logic with rank operators over GFq, where we
writeH = Z/(qZ). More precisely, we show that for every i ∈ H there is a sentence of FORq;3
which de�nes the class Ci

H over �nite τH-structures. Of course, this result by itself does not
conclude the proof of the main theorem of this chapter, which states there is a property of

�nite structures which is de�nable in FORq;2 but not inRω
p;2 for any prime p ≠ q. However,

we show that by slightly modifying our construction of C-structures (that is, by adding one
extra vertex), we get a class of structures that can be de�ned in FORq;2 but not in Rω

p;2 for
any prime p ≠ q.

Now let q be a prime and write H ∶= Z/(qZ) for the group of integers modulo q. As there
will be no need to distinguish between addition in H and addition in GFq, below, we will
write H additively with operation +. Let G = (V , E , ⩽) be an ordered connected graph,
where every vertex has degree at least two, and let γ ∶ V → H be a charge function on G.
For v ∈ V , we write I(v) ∶= I(v , γ(v)) for the set of inner vertices associated with v, and set
I(V) ∶= ⋃v∈V I(v). For each c ∈ H, let S cH,G ,γ be a system of linear equations over GFq with
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variables x(v ,w ,i) for all outer vertices (v ,w , i) in CH(G , γ) and x f for all inner vertices f , in
CH(G , γ), and the following equations.

• Outer vertex equations. For each vw ∈ E and all i , j ∈ H we add the equation:

x(v ,w ,i) + x(w ,v , j) = i + j.

• Inner vertex equations. For each f ∈ I(v) we add the equation:

∑
vw∈E(v)

x(v ,w , f (vw)) = ∑
g∈I(v)

xg .

• Total charge equation. Finally, we add the following equation:

∑
f ∈I(V)

x f = c.

�is construction resembles the systemof linear equationswe described in §5.1.1, for de�ning

the class of even Cai-Fürer-Immerman graphs. In fact, it can be seen that the system we

described there is just a special case of the more general construction above, obtained by

taking q = 2. A similar argument to the one we gave in §5.1.1 can be given to show that,
�rstly, the system S cH,G ,γ is de�nable in FORq;3 over CH(G , γ) and, secondly, that S cH,G ,γ has
a solution over GFq if and only if γ(V) = c. Furthermore, it can be shown that the class of
structures CH ∶= Ci

H can be de�ned in �rst-order logic with counting, over the signature τH .
Together, this gives us the following result.

�eorem7.32 (De�nability in FORq). Let q be a prime andwrite H = Z/(qZ). �en for every
i ∈ H, there is a sentence φi ∈ FORq;3 which de�nes the class Ci

H over �nite τH-structures.

In the statement of�eorem 7.32, it seems that “arity three” is really a lower bound for de�n-

ability in FORq, since we need at least two variables to index the set of equations in S cH,G ,γ.
To see this, note that the number of equations is one more than the number of vertices in

CH(G , γ). �erefore, in order to prove the main theorem of this chapter (�eorem 7.1), it
becomes necessary to modify the construction of C-structures slightly, so that they become
de�nable in FORq using only rank operators of arity two. �is is shown in the proof below
of the main theorem, which we restate for convenience.

�eorem 7.1 (Main theorem). For all distinct primes p and q, there is a property of �nite
structures which is de�nable in FORq;2 but not inRω

p;2.

Proof. Consider a prime q and write H ∶= Z/(qZ). Let G = (V , E , ⩽) be an ordered con-
nected graph, where every vertex has degree at least two, and let γ ∶ V → H be a charge
function on G. Consider the “augmented” structure C+H(G , γ) obtained by adding a single
vertex to CH(G , γ), disjoint from all edge and colour relations on CH(G , γ). We refer to this
additional (constant) vertex as ‘a’.
For c ∈ H, write Ax = b for the system of linear equations S cH,G ,γ de�ned as above. With

the help of the additional vertex a, it can be seen that the matrix A can be de�ned in �rst-
order logic over C+H(G , γ) by using only two variables. �at is, the sets of outer vertex and
inner vertex equations can be indexed by the sets of outer and inner vertices, respectively, and

the total charge equation can be indexed by the vertex a. Furthermore, the matrix (A ∣b) can
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also be de�ned over C+H(G , γ) in �rst-order logic using only two variables; here, the vertex
a is used to index the column vector b in the augmented matrix. �is shows that there is a
sentence of FORq;2 that is satis�ed in C+H(G , γ) if and only if the system S cH,G ,γ has a solution.
Furthermore, it can be seen that the addition of a single disjoint vertex does not a�ect the

isomorphism properties of C-structures and does not change Duplicator’s winning strategy
in the rank-partition game. �erefore, the statement of �eorem 7.24 also holds for “aug-

mented” C-structures and the main theorem follows.



Chapter 8

Conclusions and further research

In this thesis we have studied the descriptive complexity of various natural problems in linear

algebra. We conclude our discussion by recalling themajor results established and discussing

possible areas for future study.

8.1 Summary of results

In the study of descriptive complexity there have been a number of examples [12, 36, 9] show-

ing that �xed-point logic with counting (IFPC) falls short of de�ning all polynomial-time

properties of �nite structures. Most recently, it was shown that there is no sentence of IFPC

that can de�ne the solvability of a�ne equations over any �xed �nite Abelian group [4],

which is a natural problem in PTIME. By elementary linear algebra, this in turn shows that

IFPC is not able to de�ne the rank of a matrix over a �nite �eld.

To address this shortcoming of the logic, we de�ned in�ationary �xed-point logic with

rank (IFPR), an extension of IFP with operators for expressing the rank of de�nable un-

ordered matrix relations over a �nite �eld of prime cardinality. �ese operators have a sim-

ple and natural formalisation in the well-studied framework of two-sorted numerical struc-

tures that is used to formalise the counting operators in IFPC. Among our results on the

logic IFPR, we showed that it can de�ne the solvability of systems of linear equations over

any �nite �eld. Together with the fact that rank operators can simulate counting, this im-

plies that IFPR is strictly more expressive than IFPC. Furthermore, we showed that an even

weaker logic, the extension of �rst-order logic with rank operators (FOR), can already de-

�ne two of the other problems that were constructed to separate IFPC from PTIME, which

are the problem of computing the parity of Cai-Fürer-Immerman graphs and the problem

of deciding isomorphism of multipedes. �ese results illustrate that all known examples of

polynomial-time properties that are not de�nable in IFPC relate to the inability of the logic

to express basic properties in linear algebra.

We also studied the descriptive complexity of �rst-order rank logics over ordered struc-

tures. Speci�cally, we proved that for each prime p, FORp captures MODpL and that FORQ
captures LC=L, which are natural complexity classes that characterise di�erent levels of log-

arithmic space complexity. Here FORp is the fragment of FOR that only has rank operators
over the prime �eld GFp and FORQ is the extension of �rst-order logic by rank operators for
expressing the rank of rational-valued matrices.

138
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While all these results demonstrate the expressiveness of logics extended by operators for

de�ning matrix rank, it is of course possible that some other linear-algebraic property could

give rise to operators with the same, or even greater, expressive power. For instance, we could

alternatively have considered the extension of �xed-point logic with an operator for express-

ing the determinant of de�nable matrix relations, which is a natural matrix property that is
well-de�ned for square unordered matrices. However, one of our results is that this property

is already de�nable in IFPC for matrices over all �nite �elds, as well as the �eld of rationals

and the ring of integers. More generally, we showed that IFPC can de�ne the characteristic

polynomial of any square matrix over these same domains. By similar techniques, we proved

that even the rank and the minimal polynomial of rational-valued matrices are expressible

in IFPC. It is therefore seen that the additional expressive power of the logic IFPR comes

speci�cally from the ability to de�ne matrix rank over �nite �elds.
In order to delimit the expressive power of rank logics over �nite structures, we devel-

oped game-based methods for proving non-de�nability results. �e underlying games are

based on variations of Ehrenfeucht-Fraïssé-style pebble games, which form an essential tool

for analysing expressiveness of other logics, such as IFP and IFPC. �e game protocol that

we introduced is based on partitioning the game board into a number of disjoint regions,

according to some linear-algebraic criteria, which then limits the possible placement of peb-

bles on the board. �is method of partitioning the game board turned out to be quite �exible

and we showed that it can be used to give a game description of logics equipped with any set
of generalised quanti�ers.

In designing these pebble games, we had to take into consideration one important struc-

tural property that distinguishes IFPR from IFPC. It is well known that in the presence of

�xed-points, unary counting operators are su�cient to count tuples of any arity [23]. On the

other hand, we showed that rank logics have a strict arity hierarchywith respect to rank oper-
ators, where the arity of a rank operator is the number of distinct variables that it binds. More

formally, writing IFPRp;m and FORp;m to denote the fragment of IFPR and FOR, respectively,
restricted to rank operators of arity at most m over GFp (with p prime), we showed that the
arity hierarchies FORp;2 ≦ FORp;3 ≦ . . . and IFPRp;2 ≦ IFPRp;3 ≦ . . . are strict for each prime
p. One consequence of this is that the pebble game for IFPR that we de�ned had to take into
account the arity of the individual rank operators, in addition to other parameters such as

the number of variables.

Finally, we studied the extent to which the expressive power of rank operators depends

on the characteristic of the underlying prime �eld. As a part of that study, we proved that for

all distinct primes p and q, IFPRp;2 ≢ IFPRq;2 over �nite structures. �e proof of this result
combines linear algebra with an application of the partition-based game method developed

earlier, played on a pair of highly symmetric combinatorial structures.

8.2 Future work

Our results in this thesis show that �xed-point rank logic IFPR, and more generally IFPRvar,

is strictly more expressive than IFPC while still having polynomial-time data complexity. In

symbols, IFPC ≨ IFPR ≦ IFPRvar ≦ PTIME. Despite these results, we do not have any reason
to believe that either IFPR or IFPRvar captures polynomial time on all �nite structures. How-

ever, we do believe that in order to answer the question whether there is a logic for PTIME,

it is crucial to understand in a logical context many of the natural problems in linear algebra
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in general and matrix rank in particular. �is really amounts to understanding the logical

complexity of Gaussian elimination, a fundamental polynomial-time algorithm which plays

a key role in a number of important applications.

A key step in understanding the expressibility of rank operators is to characterise the rela-

tionship between �rst-order rank logics and �xed-point rank logics. While we do believe

that FOR ≨ IFPR, currently this is an open problem. Another open problem is to prove the
separation IFPRp;m ≢ IFPRq;m for all arities m ≥ 2 and all distinct primes p and q, which
would imply that IFPRp ≢ IFPRq over �nite structures. Already we proved this for m = 2
(Corollary 7.2). To extend that proof for all m ≥ 2, it remains to “li�” the set partitions and
the associated transformation matrices to all arities. But as seen from our proof in Chap-

ter 7, the direct construction for arity two is already quite involved and so it seems that a

more abstract algebraic argument is needed for the li�ing to higher arities.

Another possible way to prove that IFPRp ≢ IFPRq over �nite structures, without going
through themessy business of constructing higher-aritymatrices, is to show that the arity hi-

erarchy for rank logics collapses over graphs, say. Recall that our proof showing the strictness

of the arity hierarchy is based on a construction of Hella. �is construction shows that for

each n ≥ 1, there is a vocabulary τn+1 and a class of �nite τn+1-structures which is decidable
in polynomial time but not de�nable by any sentence of Lω(Qn), �nite-variable in�nitary
logic extended by all generalised quanti�ers of arity n. Crucially, it can be seen that the vo-
cabulary τn+1 depends on the integer n and, in particular, contains relation symbols of arity
n + 1. It is therefore possible that over a �xed signature, such as the language of graphs, the
rank arity hierarchy collapses to a �xed level. In particular, if it can be shown that the arity

hierarchy over C-structures collapses to its second level, then the separation IFPRp ≢ IFPRq
over �nite structures will follow by�eorem 7.1.

�ere are also further unanswered questions in relation to the partition-based pebble games

that we de�ned. In particular, to what extent can we simplify the rules of the rank-partition

game? As discussed above, the winning strategy for Duplicator we describe in Chapter 7 is

rather complicated and yet it only considers the simplest case, when all matrices are de�ned

by formulae of arity two. Even so, it can be seen from the description of that strategy that

it actually takes a very particular form. �at is, to show that at every round in the game

Duplicator can respond to each challenge of Spoiler with valid set partitions, we explicitly

construct a single invertible linearmap, and show that thismap takes eachmatrix obtained by
labelling one partition to the corresponding matrix over the other partition. In other words,

we demonstrate that the two families of matrices de�ned over the pair of partitions (indexed

by the class of all suitable labellings over GFp) are simultaneously similar. Clearly, the ex-
istence of such an explicit map is always su�cient for Duplicator to win the rank partition

game, but can it be shown that this condition is also necessary? If that was the case, then the

resulting game would bear a strong resemblance to the bijection game of Hella for in�nitary

counting logics, where instead of bijections we would have invertible linear maps.

Another possible game-related study is to consider the general partition game, which we

de�ned to characterise de�nability in logics equipped with any set of generalised quanti�ers.

Clearly, such games in general will be quite complicated to play. One possible direction of

future study is therefore to identify well-behaved families of generalised quanti�ers, leading

to tractable cases of the partition game.
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Yet another direction of research is to study classes of structures possessing natural polynomial-

time properties that are not known to be in either IFPC or IFPR. One example that has been

extensively studied is the problem of determiningwhether a given graph has a perfectmatch-

ing. It is known [9] that there is a sentence of IFPC that de�nes this property on bipartite

graphs, but it is not knownwhether or not it can be de�ned in either IFPC or IFPR on general

graphs. Recently, there have been some results relating questions about graph matching to

linear algebra. For instance, Hoang, Mahajan and �ierauf [40] considered the complexity

of the unique perfect matching problem on bipartite graphs, where the problem is to deter-

mine whether there is precisely one perfect matching in a given graph G. Hoang et al. show
that on bipartite graphs, this problem can be reduced to questions about the characteristic

polynomial of certain matrices. It can be seen, using our results in this thesis, that this con-

struction can be de�ned by a formula of IFPC over any bipartite graph G. It follows that the
unique perfect matching problem on bipartite graphs is de�nable in IFPC while for general

graphs de�nability is not known.

It would also be interesting to investigate the relationship of IFPR with other logics which

extend IFPC while remaining inside polynomial time. Here the main candidate is the logic

choiceless polynomial time (CPT), which was de�ned by Blass, Gurevich and Shelah [8] in an
attempt to characterise howmuch one can express in a logic which explicitly avoids arbitrary

choice. �is logic is formally de�ned by a programming language, interpreted within a time-
restricted, high-levelmachinemodel which forbids unrestricted choice. While the logic CPT

is strictly more expressive than �xed-point logic [8], there are still quite simple polynomial-

time queries which it cannot express. To overcome this limitation, Blass et al. [9] introduced

CPTC, an extension ofCPTwith a counting operator, which subsumes IFPC. It was shownby

Dawar et al. [21] that CPT, and hence CPTC, can de�ne the parity of Cai-Fürer-Immerman

graphs. To date, it is not known whether CPTC or any other variant of CPT captures all

of PTIME. In particular, it remains an open question whether the rank of a matrix can be

computed or the solvability of systems of linear equations determined in CPTC. Indeed, an

inclusion either way between IFPR and CPTC is unknown.

Finally, it remains to investigate how solvability of linear equations over a �nite �eld �ts

more generally with solvability of linear equations over a �nite Abelian group. In fact, we

don’t even know whether IFPR can de�ne solvability of linear equations over a �nite ring.
Here the basic question seems to be this: for a prime p and integer m ≥ 1, is solvability of
linear equations modulo pm de�nable in IFPRp? By “linear equations modulo pm”, we mean
a matrix equation Ax = b mod pm, where the elements of the matrix A and the column
vector b are integers. In other words, we are interested in solvability of linear equations over
the ringZpm ∶= Z/(pmZ). Whenm = 1 thenZp ≅ GFp and we can de�ne solvability of linear
equations over Zp in FORp, by �eorem 4.12. However, when m > 1 then Zpm ≇ GFpm and
it is not known whether IFPRp can de�ne solvability over such domains. It can be seen that
this question can be further reduced to questions concerning feasibility of linearDiophantine

equations. �at is, a linear system Ax = b has a solution inZpm if and only if Ax+pmy = b has
a solution in Z, where y is a column vector of the same dimension as x. Can it be shown that
IFPR has the expressive power to de�ne feasibility of Diophantine equations of this form?
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