Descriptive complexity of linear algebra

Bjarki Holm

Logical Approaches to Barriers in Computing & Complexity II

Isaac Newton Institute 2012

Overview

Study definability of natural problems in linear algebra and expressiveness of logics with algebraic operators.

- Background & motivation
- Descriptive complexity of problems in linear algebra
- Logics with matrix-rank operators
- Pebble games for rank logics & the Weisfeiler-Lehman method

Overview

Study definability of natural problems in linear algebra and expressiveness of logics with algebraic operators.

- Background & motivation
- Descriptive complexity of problems in linear algebra
- Logics with matrix-rank operators
- Pebble games for rank logics & the Weisfeiler-Lehman method

ESO — Existential second-order logic

$$\exists R_1,\ldots,R_k . \varphi(R_1,\ldots,R_k)$$

A decision problem is in **NP** if and only if it can be defined in ESO.

Fagin (1974)

ESO — Existential second-order logic

$$\exists R_1,\ldots,R_k . \varphi(R_1,\ldots,R_k)$$

A decision problem is in **NP** if and only if it can be defined in ESO.

Fagin (1974)

ESO — Existential second-order logic

$$\exists R_1, \ldots, R_k . \varphi(R_1, \ldots, R_k)$$
"guess"

A decision problem is in **NP** if and only if it can be defined in ESO.

Fagin (1974)

ESO — Existential second-order logic

$$\exists R_1, \ldots, R_k . \varphi(R_1, \ldots, R_k)$$
"guess" "verify"

A decision problem is in **NP** if and only if it can be defined in ESO.

Fagin (1974)

ESO — Existential second-order logic

Second-order variables existentially quantified, followed by a first-order formula:

$$\exists R_1, \ldots, R_k . \varphi(R_1, \ldots, R_k)$$
"guess" "verify"

Is there a logic for PTIME?

A logic for PTIME?

FP is first-order logic with an inflationary fixed-point operator.

A property *P* of ordered structures can be *decided* in PTIME if and only if *P* can be *defined* by a sentence of FP.

Immerman-Vardi (1982)

FP is first-order logic with an inflationary fixed-point operator.

A property *P* of ordered structures can be *decided* in PTIME if and only if *P* can be *defined* by a sentence of FP.

Immerman-Vardi (1982)

Ordered structure: Vocabulary contains a binary symbol "

interpreted as a total ordering of the vertices.

FP is first-order logic with an inflationary fixed-point operator.

A property *P* of ordered structures can be *decided* in PTIME if and only if *P* can be *defined* by a sentence of FP.

Immerman-Vardi (1982)

FP is first-order logic with an inflationary fixed-point operator.

A property *P* of ordered structures can be *decided* in PTIME if and only if *P* can be *defined* by a sentence of FP.

Immerman-Vardi (1982)

• On unordered structures, FP cannot even express if a graph has an even or odd number of vertices.

FP is first-order logic with an inflationary fixed-point operator.

A property *P* of ordered structures can be *decided* in PTIME if and only if *P* can be *defined* by a sentence of FP.

Immerman-Vardi (1982)

- On unordered structures, FP cannot even express if a graph has an even or odd number of vertices.
- *Fixed-point logic with counting* (FPC) is FP together with terms that count the number of solutions to formulas.

FPC captures PTIME on... all graphs?

 C^k — first-order logic with variables x_1 , ..., x_k and counting quantifiers of the form $\exists \geq i_x \cdot \varphi$

 C^k — first-order logic with variables x_1 , ..., x_k and counting quantifiers of the form $\exists \geq^i x \cdot \varphi$

1. Every formula of FPC is invariant under C^k equivalence, for some k.

- C^k first-order logic with variables x_1 , ..., x_k and counting quantifiers of the form $\exists \geq i_x \cdot \varphi$
- 1. Every formula of FPC is invariant under C^k -equivalence, for some k.
- 2. *C*^k-equivalence can be characterised by a *k*-pebble bijection game (a variant of Ehrenfeucht–Fraïsse)

- C^k first-order logic with variables x_1 , ..., x_k and counting quantifiers of the form $\exists \geq^i x \cdot \varphi$
- 1. Every formula of FPC is invariant under C^k equivalence, for some k.
- 2. *C*^{*k*}-equivalence can be characterised by a *k*-pebble bijection game (a variant of Ehrenfeucht–Fraïsse)

G and H agree on all sentences of C^k

iff

Duplicator has a winning strategy in the *k*-pebble bijection game on *G* and *H*

 C^k — first-order logic with variables x_1 , ..., x_k and counting quantifiers of the form $\exists \geq i_x \cdot \varphi$

 C^k — first-order logic with variables x_1 , ..., x_k and counting quantifiers of the form $\exists \geq i_x \cdot \varphi$

To show that a property **P** is not definable in FPC:

 C^k — first-order logic with variables x_1 , ..., x_k and counting quantifiers of the form $\exists \geq i_x \cdot \varphi$

To show that a property **P** is not definable in FPC:

For each k, exhibit a pair of graphs G_k and H_k for which

 C^k — first-order logic with variables x_1 , ..., x_k and counting quantifiers of the form $\exists \geq^i x \cdot \varphi$

To show that a property **P** is not definable in FPC:

For each k, exhibit a pair of graphs G_k and H_k for which

• G_k has property **P** but H_k does not; and

 C^k — first-order logic with variables x_1 , ..., x_k and counting quantifiers of the form $\exists \geq^i x \cdot \varphi$

To show that a property **P** is not definable in FPC:

For each k, exhibit a pair of graphs G_k and H_k for which

- G_k has property **P** but H_k does not; and
- Duplicator wins the k-pebble game on G_k and H_k .

- C^k first-order logic with variables x_1 , ..., x_k and counting quantifiers of the form $\exists \geq i_x \cdot \varphi$
- 1. Every formula of FPC is invariant under C^k equivalence, for some k.
- 2. *C*^k-equivalence can be characterised by a *k*-pebble bijection game (a variant of Ehrenfeucht–Fraïsse)

- C^k first-order logic with variables x_1 , ..., x_k and counting quantifiers of the form $\exists \geq^i x \cdot \varphi$
- 1. Every formula of FPC is invariant under C^k equivalence, for some k.
- 2. *C*^k-equivalence can be characterised by a *k*-pebble bijection game (a variant of Ehrenfeucht–Fraïsse)

Facts

- C^k first-order logic with variables x_1 , ..., x_k and counting quantifiers of the form $\exists \geq^i x \cdot \varphi$
- 1. Every formula of FPC is invariant under C^k equivalence, for some k.
- 2. *C*^k-equivalence can be characterised by a *k*-pebble bijection game (a variant of Ehrenfeucht–Fraïsse)

Facts

• For each *k*, we can decide the winner of the *k*-pebble game in polynomial time.

- C^k first-order logic with variables x_1 , ..., x_k and counting quantifiers of the form $\exists \geq^i x \cdot \varphi$
- 1. Every formula of FPC is invariant under C^k equivalence, for some k.
- 2. *C*^k-equivalence can be characterised by a *k*-pebble bijection game (a variant of Ehrenfeucht–Fraïsse)

Facts

- For each *k*, we can decide the winner of the *k*-pebble game in polynomial time.
- Close connection with a family of algorithms for graph isomorphism: Weisfeiler-Lehman method.

Non-definability result for FPC

There is a polynomial-time decidable property of finite graphs that is not definable in FPC.

Cai, Fürer and Immerman (1992)

There is a polynomial-time decidable property of finite graphs that is not definable in FPC. "CFI property"

Cai, Fürer and Immerman (1992)

There is a polynomial-time decidable property of finite graphs that is not definable in FPC.

"CFI property"

Cai, Fürer and Immerman (1992)

Corollary

FPC does not capture PTIME on

There is a polynomial-time decidable property of finite graphs that is not definable in FPC. "CFI property"

Cai, Fürer and Immerman (1992)

Corollary

FPC does not capture PTIME on

graphs of bounded degree

There is a polynomial-time decidable property of finite graphs that is not definable in FPC. "CFI property"

Cai, Fürer and Immerman (1992)

Corollary

FPC does not capture PTIME on

graphs of bounded degree

(not even degree 3)

There is a polynomial-time decidable property of finite graphs that is not definable in FPC. "CFI property"

Cai, Fürer and Immerman (1992)

Corollary

FPC does not capture PTIME on

graphs of bounded degree

- (not even degree 3)
- graphs of bounded colour-class size

There is a polynomial-time decidable property of finite graphs that is not definable in FPC. "CFI property"

Cai, Fürer and Immerman (1992)

Corollary

FPC does not capture PTIME on

- graphs of bounded degree
- graphs of bounded colour-class size

(not even degree 3)

(not even size 4)

There is a polynomial-time decidable property of finite graphs that is not definable in FPC. "CFI property"

Cai, Fürer and Immerman (1992)

Corollary

FPC does not capture PTIME on

• graphs of bounded degree (not even degree 3)

• graphs of bounded colour-class size (not even size 4)

Still, the CFI query is hardly a natural graph property...

There is a polynomial-time decidable property of finite graphs that is not definable in FPC. "CFI property"

Cai, Fürer and Immerman (1992)

Corollary

FPC does not capture PTIME on

• graphs of bounded degree (not even degree 3)

• graphs of bounded colour-class size (not even size 4)

Still, the CFI query is hardly a natural graph property...

More recently: See which problems in linear algebra can be expressed in FPC

Descriptive complexity of problems in linear algebra

 $A = (a_{ij})$ — an m-by-n rectangular array of elements

 $A = (a_{ij})$ — an *m*-by-*n* rectangular array of elements

Recall: Over ordered structures FP (and hence FPC) can define *all* polynomial-time properties.

 $A = (a_{ij})$ — an m-by-n rectangular array of elements

Recall: Over ordered structures FP (and hence FPC) can define *all* polynomial-time properties.

rows and columns ordered

$$A = (a_{ij})$$
 — an m -by- n rectangular array of elements

Recall: Over ordered structures FP (and hence FPC) can define *all* polynomial-time properties.

rows and all PTIME matrix columns properties can be defined in FP

Many natural matrix properties invariant under permutation of rows and columns

 $A = (a_{ij})$ — an m-by-n rectangular array of elements

Recall: Over ordered structures FP (and hence FPC) can define *all* polynomial-time properties.

rows and all PTIME matrix columns properties can be defined in FP

Many natural matrix properties invariant under permutation of rows and columns

 $A = (a_{ij})$ — an *m*-by-*n* rectangular array of elements

Recall: Over ordered structures FP (and hence FPC) can define *all* polynomial-time properties.

rows and all PTIME matrix columns properties can be defined in FP

Many natural matrix properties invariant under permutation of rows and columns

$$A = (a_{ij})$$
 — an *m*-by-*n* rectangular array of elements

Recall: Over ordered structures FP (and hence FPC) can define *all* polynomial-time properties.

rows and all PTIME matrix columns properties can be defined in FP

Many natural matrix properties invariant under permutation of rows and columns

(rank, determinant, etc.)

Unordered matrices

I, *J* — finite and non-empty sets

D — a group, a ring or a field

Unordered matrices

I, J — finite and non-empty sets

D — a group, a ring or a field

 $A:I\times J\to D$

Unordered matrices

I, J — finite and non-empty sets

D — a group, a ring or a field

 $A:I\times J\to D$ "an *I-by-J* matrix over D"

I, J — finite and non-empty sets

D — a group, a ring or a field

I, J — finite and non-empty sets

D — a group, a ring or a field

$$\mathfrak{S} = (I, J; (A_d)_{d \in D}, (b_d)_{d \in D})$$
 where $A_d \subseteq I \times J$ and $b_d \subseteq I$

$$\mathfrak{S} = (I, J; (A_d)_{d \in D}, (b_d)_{d \in D})$$
 where $A_d \subseteq I \times J$ and $b_d \subseteq I$

$$\mathfrak{S} = (I, J; (A_d)_{d \in D}, (b_d)_{d \in D})$$
 where $A_d \subseteq I \times J$ and $b_d \subseteq I$

$$A \mathbf{x} = \mathbf{b}$$

$$\mathfrak{S} = (I, J; (A_d)_{d \in D}, (b_d)_{d \in D})$$
 where $A_d \subseteq I \times J$ and $b_d \subseteq I$

$$\mathfrak{S} = (I, J; (A_d)_{d \in D}, (b_d)_{d \in D})$$
 where $A_d \subseteq I \times J$ and $b_d \subseteq I$ A_1

$$A \mathbf{x} = \mathbf{b}$$

As a relational structure over a fixed domain *D*:

$$\mathfrak{S}=(I,J;(A_d)_{d\in D},(b_d)_{d\in D})\quad\text{where}\quad A_d\subseteq I\times J \text{ and } b_d\subseteq I$$

In this talk: Focus on I = I

Solvability of systems of linear equations over any fixed finite Abelian group is not definable in FPC.

Atserias, Bulatov and Dawar (2007)

Corollary

Solvability of systems of linear equations over any fixed finite field is not definable in FPC.

Atserias, Bulatov and Dawar (2007)

Corollary

Solvability of systems of linear equations over any fixed finite field is not definable in FPC.

Atserias, Bulatov and Dawar (2007)

Recall: A linear system $A\mathbf{x} = \mathbf{b}$ over a field k is solvable if and only if the matrices A and $(A \mid \mathbf{b})$ have the same rank over k

Corollary

Solvability of systems of linear equations over any fixed finite field is not definable in FPC.

Atserias, Bulatov and Dawar (2007)

Recall: A linear system $A\mathbf{x} = \mathbf{b}$ over a field k is solvable if and only if the matrices A and $(A \mid \mathbf{b})$ have the same rank over k

Corollary

Matrix rank over finite fields is not definable in FPC.

Which matrix properties *can* be defined in FPC?

Which matrix properties *can* be defined in FPC?

1. Characteristic polynomial and determinant of a square matrix over **Z**, **Q** and any finite field.

Dawar, H., Grohe, Laubner (2009)

Which matrix properties *can* be defined in FPC?

- 1. Characteristic polynomial and determinant of a square matrix over **Z**, **Q** and any finite field.
- 2. The inverse to any invertible square matrix over **Z**, **Q** and any finite field.

Dawar, H., Grohe, Laubner (2009)

- 1. Characteristic polynomial and determinant of a square matrix over **Z**, **Q** and any finite field.
- 2. The inverse to any invertible square matrix over **Z**, **Q** and any finite field.
- 3. Rank of a matrix over **Q**.

Dawar, H., Grohe, Laubner (2009)

- 1. Characteristic polynomial and determinant of a square matrix over **Z**, **Q** and any finite field.
- 2. The inverse to any invertible square matrix over **Z**, **Q** and any finite field.
- 3. Rank of a matrix over **Q**.

Dawar, H., Grohe, Laubner (2009)

4. Minimal polynomial of a square matrix over **Q** and any finite field.

H.-Pakusa (2010)

- 1. Characteristic polynomial and determinant of a square matrix over **Z**, **Q** and any finite field.
- 2. The inverse to any invertible square matrix over **Z**, **Q** and any finite field.
- 3. Rank of a matrix over **Q**.

Dawar, H., Grohe, Laubner (2009)

4. Minimal polynomial of a square matrix over **Q** and any finite field.

H.-Pakusa (2010)

Fundamental linear-algebraic property over *fields* that separates FPC from PTIME: rank over finite fields

- 1. Characteristic polynomial and determinant of a square matrix over **Z**, **Q** and any finite field.
- 2. The inverse to any invertible square matrix over **Z**, **Q** and any finite field.
- 3. Rank of a matrix over **Q**.

Dawar, H., Grohe, Laubner (2009)

4. Minimal polynomial of a square matrix over **Q** and any finite field.

H.-Pakusa (2010)

Fundamental linear-algebraic property over *fields* that separates FPC from PTIME: rank over finite fields

(Next talk: solvability problems over groups and rings)

Next step: extend fixed-point logic with ability to define matrix rank

formula
$$\varphi(x, y)$$

graph $G = (V, E)$

formula
$$\varphi(x,y)$$
 \longrightarrow M_{φ}^G : V V V

Recall: View any $A \subseteq I \times I$ as a matrix over GF(2).

Example: $\varphi(x,y) := E(x,y) \longrightarrow M_{\varphi}^G = \text{adjacency matrix of } G$

Recall: View any $A \subseteq I \times I$ as a matrix over GF(2).

Example: $\varphi(x,y) := E(x,y) \longrightarrow M_{\varphi}^G = \text{adjacency matrix of } G$

More generally: formalise matrices over GF(p), p prime

Variables are typed:

Variables are typed:

vertex variables: range over the vertices *V*

Variables are typed:

number variables: range over \mathbb{N}

vertex variables: range over the vertices *V*

Variables are typed:

number variables: range over \mathbb{N}

vertex variables: range over the vertices V

- Bounded quantification over number sort

Variables are typed:

number variables: range over \mathbb{N}

vertex variables: range over the vertices *V*

- Bounded quantification over number sort
- Extend FP with rules for rank terms: $\mathbf{rk}_p(x,y).arphi$ (p prime)

Variables are typed:

number variables: range over \mathbb{N}

vertex variables: range over the vertices V

- Bounded quantification over number sort
- Extend FP with rules for rank terms: $\mathbf{rk}_p(x,y).arphi$ (p prime)

Semantics:
$$(\mathbf{rk}_p(x,y).\varphi)^G := \operatorname{rank}(M_\varphi^G)$$
 over $\operatorname{GF}(p)$

Variables are typed:

number variables: range over \mathbb{N}

vertex variables: range over the vertices V

- Bounded quantification over number sort
- Extend FP with rules for rank terms: $\mathbf{rk}_p(x,y).arphi$ (p prime)

Semantics:
$$(\mathbf{rk}_p(x,y).\varphi)^G := \operatorname{rank}(M_\varphi^G)$$
 over $\operatorname{GF}(p)$

 \longrightarrow Logics FPR_p, FPR and similarly FOR_p, FOR

For any prime p, FPR_p can express solvability of linear equations over GF(p).

Dawar, Grohe, H., Laubner (2009)

For any prime p, FPR $_p$ can express solvability of linear equations over $GF(p^m)$ for any m.

H. (2010)

For any prime p, FPR $_p$ can express solvability of linear equations over $GF(p^m)$ for any m.

H. (2010)

over $GF(p^m)$

For any prime p, FPR $_p$ can express solvability of linear equations over $GF(p^m)$ for any m.

H. (2010)

over $GF(p^m)$

Represent each element of $GF(p^m)$ as an m-by-m matrix over GF(p)

For any prime p, FPR $_p$ can express solvability of linear equations over $GF(p^m)$ for any m.

H. (2010)

Represent each element of $GF(p^m)$ as an m-by-m matrix over GF(p)

For any prime p, FPR $_p$ can express solvability of linear equations over $GF(p^m)$ for any m.

H. (2010)

Represent each element of $GF(p^m)$ as an m-by-m matrix over GF(p)

Corollary

For any prime p, FPC \subseteq FPR $_p \subseteq$ PTIME.

For any prime p, FPR $_p$ can express solvability of linear equations over $GF(p^m)$ for any m.

H. (2010)

Represent each element of $GF(p^m)$ as an m-by-m matrix over GF(p)

Corollary

(we can simulate counting by expressing rank of diagonal matrices)

For any prime p, FPC \subseteq FPR $_p \subseteq$ PTIME.

CFI graphs revisited

Non-isomorphic CFI graphs can be distinguished by a sentence of FOR₂.

Dawar, Grohe, H., Laubner (2009)

CFI graphs revisited

Non-isomorphic CFI graphs can be distinguished by a sentence of FOR₂.

Dawar, Grohe, H., Laubner (2009)

Recall: FPC does not capture PTIME on graphs of bounded colour-class size not even size 4

CFI graphs revisited

Non-isomorphic CFI graphs can be distinguished by a sentence of FOR₂.

Dawar, Grohe, H., Laubner (2009)

Recall: FPC does not capture PTIME on graphs of bounded colour-class size not even size 4

Isomorphism of graphs of colour class size 4 can be expressed in FOR₂.

Dawar, H. (2011)

Pebble games for rank logics & the Weisfeiler-Lehman method

Recall: Proofs of inexpressibility in FPC are generally formulated using a game method.

Recall: Proofs of inexpressibility in FPC are generally formulated using a game method.

Our wish list:

Recall: Proofs of inexpressibility in FPC are generally formulated using a game method.

Our wish list:

A pebble game for finite-variable rank logics for which...

Recall: Proofs of inexpressibility in FPC are generally formulated using a game method.

Our wish list:

A pebble game for finite-variable rank logics for which...

1. we can decide who wins the game in polynomial time, and

Recall: Proofs of inexpressibility in FPC are generally formulated using a game method.

Our wish list:

A pebble game for finite-variable rank logics for which...

- 1. we can decide who wins the game in polynomial time, and
- 2. there is a corresponding "stable colouring algorithm", like for the counting game on graphs.

Recall: Proofs of inexpressibility in FPC are generally formulated using a game method.

Our wish list:

A pebble game for finite-variable rank logics for which...

```
matrix-rank game
```

- 1. we can decide who wins the game in polynomial time, and
- 2. there is a corresponding "stable colouring algorithm", like for the counting game on graphs.

Recall: Proofs of inexpressibility in FPC are generally formulated using a game method.

Our wish list:

A pebble game for finite-variable rank logics for which...

matrix-rank game

- 1. we can decide who wins the game in polynomial time, and
- 2. there is a corresponding "stable colouring algorithm", like for the counting game on graphs.

invertiblemap game

 R_p^k — first-order logic with variables x_1 , ..., x_k and rank quantifiers of the form $\operatorname{rk}_p^{\geq i}(x,y)$. (φ)

 R_p^k — first-order logic with variables x_1 , ..., x_k and rank quantifiers of the form $\operatorname{rk}_p^{\geq i}(x,y)$. (φ)

1. Every formula of FPR $_p$ is invariant under R_p^k - equivalence, for some k.

- R_p^k first-order logic with variables x_1 , ..., x_k and rank quantifiers of the form $\operatorname{rk}_p^{\geq i}(x,y)$. (φ)
- 1. Every formula of FPR $_p$ is invariant under R_p^k equivalence, for some k.
- 2. R_p^k -equivalence can be characterised by a k-pebble matrix-rank game (over GF(p))

- R_p^k first-order logic with variables x_1 , ..., x_k and rank quantifiers of the form $\operatorname{rk}_p^{\geq i}(x,y)$. (φ)
- 1. Every formula of FPR $_p$ is invariant under R_p^k equivalence, for some k.
- 2. R_p^k -equivalence can be characterised by a k-pebble matrix-rank game (over GF(p))

G and H agree on all sentences of k-variable iff rank logic over GF(p)

Duplicator has a winning ff strategy in the *k*-pebble matrix-rank game on *G* and *H*

Game played on finite graphs *G* and *H*

 Protocol based on partitioning each game board into disjoint {0,1}-matrices ("partition matrices").

- Protocol based on partitioning each game board into disjoint {0,1}-matrices ("partition matrices").
- <u>Algebraic game rules</u>: At each round, Duplicator has to ensure that <u>every linear combination</u> of partition matrices over *G* has the same GF(*p*)-rank as the corresponding linear combination over *H*.

<u>Problem</u>: Not known if we can decide in polynomial time which player wins the game.

- Protocol based on partitioning each game board into disjoint {0,1}-matrices ("partition matrices").
- <u>Algebraic game rules</u>: At each round, Duplicator has to ensure that every linear combination of partition matrices over *G* has the same GF(*p*)-rank as the corresponding linear combination over *H*.

<u>Problem</u>: Not known if we can decide in polynomial time which player wins the game.

- Protocol based on partitioning each game board into disjoint {0,1}-matrices ("partition matrices").
- <u>Algebraic game rules</u>: At each round, Duplicator has to ensure that every linear combination of partition matrices over *G* has the same GF(*p*)-rank as the corresponding linear combination over *H*.

Strengthening the game rules

Two tuples $(A_1, A_2, ..., A_m)$ and $(B_1, B_2, ..., B_m)$ of n-by-n matrices over a field k are simultaneously similar if there is an invertible S such that S A_i $S^{-1} = B_i$ for all i.

Strengthening the game rules

Two tuples $(A_1, A_2, ..., A_m)$ and $(B_1, B_2, ..., B_m)$ of n-by-n matrices over a field k are simultaneously similar if there is an invertible S such that S A_i $S^{-1} = B_i$ for all i.

There is a deterministic algorithm that, given two mtuples \mathbf{A} and \mathbf{B} of n-by-n matrices over a finite field $\mathrm{GF}(q)$,
determines in time $\mathrm{poly}(n, m, q)$ whether \mathbf{A} and \mathbf{B} are
simultaneously similar.

Chistov, Karpinsky and Ivanyov (1997)

Invertible-map game on G and H over GF(p):

• Protocol based on partitioning each game board into disjoint {0,1}-matrices ("partition matrices").

Invertible-map game on G and H over GF(p):

- Protocol based on partitioning each game board into disjoint {0,1}-matrices ("partition matrices").
- New game rule: At each round, Duplicator has to ensure that the two tuples of partition matrices (over *G* and *H*) are simultaneously similar over GF(*p*).

Invertible-map game on G and H over GF(p):

- Protocol based on partitioning each game board into disjoint {0,1}-matrices ("partition matrices").
- New game rule: At each round, Duplicator has to ensure that the two tuples of partition matrices (over *G* and *H*) are simultaneously similar over GF(*p*).

Facts:

Invertible-map game on G and H over GF(p):

- Protocol based on partitioning each game board into disjoint {0,1}-matrices ("partition matrices").
- New game rule: At each round, Duplicator has to ensure that the two tuples of partition matrices (over *G* and *H*) are simultaneously similar over GF(*p*).

Facts:

• We can decide who wins this game in PTIME.

Invertible-map game on G and H over GF(p):

- Protocol based on partitioning each game board into disjoint {0,1}-matrices ("partition matrices").
- New game rule: At each round, Duplicator has to ensure that the two tuples of partition matrices (over *G* and *H*) are simultaneously similar over GF(*p*).

Facts:

- We can decide who wins this game in PTIME.
- Refines R_p^k -equivalence: If Duplicator wins the kpebble invertible-map game on G and H then she also
 wins the k-pebble matrix rank game on G and H.

Connection with stable colouring

Recall:

Our wish list:

A pebble game for finite-variable rank logics for which...

matrix-rank game

- 1. we can decide who wins the game in polynomial time, and
- 2. there is a corresponding "stable colouring algorithm", like for the counting game on graphs.

invertiblemap game

Input: Graph G = (V, E)

Output: Equivalence relation \approx on V.

"colour refinement" or "stable colouring"

Input: Graph G = (V, E)

Output: Equivalence relation \approx on V.

"colour refinement" or "stable colouring"

Input: Graph G = (V, E)

Output: Equivalence relation \approx on V.

Inductively define: $\sim_0 \supseteq \sim_1 \supseteq \ldots \supseteq \sim_m = \sim_{m+1} =: \approx$

"colour refinement" or "stable colouring"

Input: Graph G = (V, E)

Output: Equivalence relation \approx on V.

Inductively define: $\sim_0 \supseteq \sim_1 \supseteq \ldots \supseteq \sim_m = \sim_{m+1} =: \approx$

Initial: $u \sim_0 v$ iff $\deg(u) = \deg(v)$

"colour refinement" or "stable colouring"

Input: Graph G = (V, E)

Output: Equivalence relation \approx on V.

Inductively define: $\sim_0 \supseteq \sim_1 \supseteq \ldots \supseteq \sim_m = \sim_{m+1} =: \approx$

Initial: $u \sim_0 v$ iff $\deg(u) = \deg(v)$

"colour refinement" or "stable colouring"

Input: Graph G = (V, E)

Output: Equivalence relation \approx on V.

Inductively define: $\sim_0 \supseteq \sim_1 \supseteq \ldots \supseteq \sim_m = \sim_{m+1} =: \approx$

Initial: $u \sim_0 v$ iff $\deg(u) = \deg(v)$

Refine: $u \sim_{i+1} v$ iff $u \sim_i v$ and for all $\alpha \in V/\sim_i$:

$$||N(u) \cap \alpha|| = ||N(v) \cap \alpha||$$

"colour refinement" or "stable colouring"

Input: Graph G = (V, E)

Output: Equivalence relation \approx on V.

Inductively define: $\sim_0 \supseteq \sim_1 \supseteq \ldots \supseteq \sim_m = \sim_{m+1} =: \approx$

Initial: $u \sim_0 v$ iff $\deg(u) = \deg(v)$

Refine: $u \sim_{i+1} v$ iff $u \sim_i v$ and for all $\alpha \in V/\sim_i$:

$$||N(u) \cap \alpha|| = ||N(v) \cap \alpha||$$

"colour refinement" or "stable colouring"

Input: Graph G = (V, E)

Output: Equivalence relation \approx on V.

Inductively define: $\sim_0 \supseteq \sim_1 \supseteq \ldots \supseteq \sim_m = \sim_{m+1} =: \approx$

Initial: $u \sim_0 v$ iff $\deg(u) = \deg(v)$

Refine: $u \sim_{i+1} v$ iff $u \sim_i v$ and for all $\alpha \in V/\sim_i$:

$$||N(u) \cap \alpha|| = ||N(v) \cap \alpha||$$

Input: Graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$

Output: "isomorphic" or "not isomorphic"

Input: Graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$

Output: "isomorphic" or "not isomorphic"

- 1. Compute the WL refinement \approx on $G \dot{\cup} H$
- 2. Output "not isomorphic" if there is some $\alpha \in G \cup H/\approx$ such that $\|\alpha \cap V_G\| \neq \|\alpha \cap V_H\|$; else "isomorphic".

Input: Graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$

Output: "isomorphic" or "not isomorphic"

- 1. Compute the WL refinement \approx on $G \dot{\cup} H$
- 2. Output "not isomorphic" if there is some $\alpha \in G \cup H/\approx$ such that $\|\alpha \cap V_G\| \neq \|\alpha \cap V_H\|$; else "isomorphic".

Some facts:

Input: Graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$

Output: "isomorphic" or "not isomorphic"

- 1. Compute the WL refinement \approx on $G \dot{\cup} H$
- 2. Output "not isomorphic" if there is some $\alpha \in G \cup H/\approx$ such that $\|\alpha \cap V_G\| \neq \|\alpha \cap V_H\|$; else "isomorphic".

Some facts:

1. WL runs in time $O(n^2 \log(n))$

Input: Graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$

Output: "isomorphic" or "not isomorphic"

- 1. Compute the WL refinement \approx on $G \dot{\cup} H$
- 2. Output "not isomorphic" if there is some $\alpha \in G \cup H/\approx$ such that $\|\alpha \cap V_G\| \neq \|\alpha \cap V_H\|$; else "isomorphic".

Some facts:

- 1. WL runs in time $O(n^2 \log(n))$
- 2. WL is correct almost surely

 Babai, Erdös and Selkow (1980)

Input: Graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$

Output: "isomorphic" or "not isomorphic"

- 1. Compute the WL refinement \approx on $G \dot{\cup} H$
- 2. Output "not isomorphic" if there is some $\alpha \in G \cup H/\approx$ such that $\|\alpha \cap V_G\| \neq \|\alpha \cap V_H\|$; else "isomorphic".

Some facts:

- 1. WL runs in time $O(n^2 \log(n))$
- 2. WL is correct almost surely

 Babai, Erdös and Selkow (1980)
- 3. WL fails on non-isomorphic regular graphs

k-dimensional WL* refinement

One-element extensions in G = (V, E)

For $\alpha \subseteq V^k$, a k-tuple $\vec{u} \in V^k$ and $0 \le i < k$, let:

$$\Gamma_i(\vec{u}, \alpha) := \{ w \in V \mid \vec{u} \cdot \frac{w}{i} \in \alpha \}$$

k-dimensional WL* refinement

One-element extensions in G = (V, E)

For $\alpha \subseteq V^k$, a k-tuple $\vec{u} \in V^k$ and $0 \le i < k$, let:

$$\Gamma_i(\vec{u}, \alpha) := \{ w \in V \mid \vec{u} \cdot \frac{w}{i} \in \alpha \}$$

Example: Let k = 3 and $\alpha := \{(x, y, z) \in V^3 \mid (x, y, z) = \triangle \}$

k-dimensional WL* refinement

One-element extensions in G = (V, E)

For $\alpha \subseteq V^k$, a k-tuple $\vec{u} \in V^k$ and 0 < i < k, let:

$$\Gamma_i(\vec{u}, \alpha) := \{ w \in V \mid \vec{u} \cdot \frac{w}{i} \in \alpha \}$$

Example: Let k = 3 and $\alpha := \{(x, y, z) \in V^3 \mid (x, y, z) = \triangle \}$

$$\Gamma_0(uvw, \alpha) = \{a, b\}$$

$$\Gamma_1(uvw, \alpha) = \emptyset$$

Input: Graph G = (V, E)

Output: Equivalence relation \approx on V^k .

Input: Graph G = (V, E)

Output: Equivalence relation \approx on V^k .

Initial: $\vec{u} \sim_0 \vec{v}$ iff $\operatorname{atp}_G(\vec{u}) = \operatorname{atp}_G(\vec{v})$

Input: Graph G = (V, E)

Output: Equivalence relation \approx on V^k .

Initial: $\vec{u} \sim_0 \vec{v}$ iff $\operatorname{atp}_G(\vec{u}) = \operatorname{atp}_G(\vec{v})$

Refine: $\vec{u} \sim_{m+1} \vec{v}$ iff $\vec{u} \sim_m \vec{v}$ and for all $0 \le i < k$ there is a bijection $f: V \to V$ s.t.

$$f: \Gamma_i(\vec{u}, \alpha) \mapsto \Gamma_i(\vec{v}, \alpha)$$

for all $\alpha \in V^k / \sim_m$

Input: Graph G = (V, E)

Output: Equivalence relation \approx on V^k .

Initial: $\vec{u} \sim_0 \vec{v}$ iff $\operatorname{atp}_G(\vec{u}) = \operatorname{atp}_G(\vec{v})$

Refine: $\vec{u} \sim_{m+1} \vec{v}$ iff $\vec{u} \sim_m \vec{v}$ and for all $0 \le i < k$ there is a bijection $f: V \to V$ s.t.

$$\Gamma_i(\vec{u},\alpha) := \{ w \in V \mid \vec{u}^{\underline{w}} \in \alpha \} \longrightarrow f : \Gamma_i(\vec{u},\alpha) \mapsto \Gamma_i(\vec{v},\alpha)$$

for all $\alpha \in V^k / \sim_m$

Input: Graph G = (V, E)

Output: Equivalence relation \approx on V^k .

Initial: $\vec{u} \sim_0 \vec{v}$ iff $\operatorname{atp}_G(\vec{u}) = \operatorname{atp}_G(\vec{v})$

Refine: $\vec{u} \sim_{m+1} \vec{v}$ iff $\vec{u} \sim_m \vec{v}$ and for all $0 \le i < k$ there is a bijection $f: V \to V$ s.t.

$$\Gamma_i(\vec{u},\alpha) := \{ w \in V \mid \vec{u}^{\underline{w}}_i \in \alpha \} \longrightarrow f : \Gamma_i(\vec{u},\alpha) \mapsto \Gamma_i(\vec{v},\alpha)$$

for all $\alpha \in V^k / \sim_m$

Theorem: $\vec{u} \approx \vec{v}$ iff they agree on all C^k -formulas in G.

k-dimensional WL* algorithm for GI

<u>As before</u>: compute *k*-dimensional WL* refinement and compare across the two graphs.

PTIME for fixed k: k-dim WL* runs in time $O(n^{k+1} \log(n))$.

k-dimensional WL* algorithm for GI

<u>As before</u>: compute k-dimensional WL* refinement and compare across the two graphs.

PTIME for fixed k: k-dim WL* runs in time $O(n^{k+1} \log(n))$.

There exists a sequence of pairs $\{(G_n, H_n)\}_n$ of non-isomorphic graphs for which it holds that:

- G_n and H_n have O(n) vertices but
- G_n and H_n are not distinguished by the n-dim WL* algorithm.

 Cai, Fürer and Immerman (1992)

Two-element extensions in G = (V, E)

For $\alpha \subseteq V^k$, a k-tuple $\vec{u} \in V^k$ and $0 \le i \ne j < k$, let:

$$\Gamma_{ij}(\vec{u},\alpha) := \{(a,b) \in V \times V \mid \vec{u}^{\underline{a}}_{i}^{\underline{b}} \in \alpha\} \subseteq V \times V$$

Two-element extensions in G = (V, E)

For $\alpha \subseteq V^k$, a k-tuple $\vec{u} \in V^k$ and $0 \le i \ne j < k$, let:

$$\Gamma_{ij}(\vec{u},\alpha) := \{(a,b) \in V \times V \mid \vec{u}^{\underline{a}}_{i}^{\underline{b}}_{j} \in \alpha\} \subseteq V \times V \longleftarrow \{0,1\}\text{-matrix}$$

Two-element extensions in G = (V, E)

For $\alpha \subseteq V^k$, a k-tuple $\vec{u} \in V^k$ and $0 \le i \ne j < k$, let:

$$\Gamma_{ij}(\vec{u},\alpha) := \{(a,b) \in V \times V \mid \vec{u}^{\underline{a}}_{i} \frac{b}{j} \in \alpha\} \subseteq V \times V \longleftarrow \{0,1\}\text{-matrix}$$

Example: Let k = 3 and $\alpha := \{(x, y, z) \in V^3 \mid (x, y, z) = \triangle \}$

Two-element extensions in G = (V, E)

For $\alpha \subseteq V^k$, a k-tuple $\vec{u} \in V^k$ and $0 \le i \ne j < k$, let:

$$\Gamma_{ij}(\vec{u},\alpha) := \{(a,b) \in V \times V \mid \vec{u}^{\underline{a}}_{i}^{\underline{b}}_{j} \in \alpha\} \subseteq V \times V \longleftarrow \{0,1\}\text{-matrix}$$

 Γ_{12} :

k-dimensional IM refinement over GF(p)

Input: Graph G = (V, E)

Output: Equivalence relation \approx on V^k .

k-dimensional IM refinement over GF(p)

Input: Graph G = (V, E)

Output: Equivalence relation \approx on V^k .

Initial: $\vec{u} \sim_0 \vec{v}$ iff $\operatorname{atp}_G(\vec{u}) = \operatorname{atp}_G(\vec{v})$

k-dimensional IM refinement over GF(p)

Input: Graph G = (V, E)

Output: Equivalence relation \approx on V^k .

Initial: $\vec{u} \sim_0 \vec{v}$ iff $\operatorname{atp}_G(\vec{u}) = \operatorname{atp}_G(\vec{v})$

Refine: $\vec{u} \sim_{m+1} \vec{v}$ iff $\vec{u} \sim_m \vec{v}$ and for all $0 \le i \ne j < k$ there is $S \in \mathrm{GL}_V(\mathsf{GF}(p))$ s.t.

$$S \cdot \Gamma_{ij}(\vec{u}, \alpha) \cdot S^{-1} = \Gamma_{ij}(\vec{v}, \alpha)$$

for all $\alpha \in V^k / \sim_m$

Similar to WL: compute k-dimensional IM refinement and compare across the two graphs (here over GF(p))

Similar to WL: compute k-dimensional IM refinement and compare across the two graphs (here over GF(p))

- For each k, k-dim IM_p runs in polynomial time for all p.
- Refinement: k-dim WL^{*} \supseteq (k+1)-dim IM $_p$ \supseteq (k+2)-dim IM $_p$

Similar to WL: compute k-dimensional IM refinement and compare across the two graphs (here over GF(p))

- For each k, k-dim IM_p runs in polynomial time for all p.
- Refinement: k-dim WL^{*} \supseteq (k+1)-dim IM $_p$ \supseteq (k+2)-dim IM $_p$

For each k and prime p, there is a pair of non-isomorphic graphs that can be distinguished by 3-dim IM_p but not by k-dim WL^* .

Similar to WL: compute k-dimensional IM refinement and compare across the two graphs (here over GF(p))

- For each k, k-dim IM_p runs in polynomial time for all p.
- Refinement: k-dim WL^{*} \supseteq (k+1)-dim IM $_p$ \supseteq (k+2)-dim IM $_p$

For each k and prime p, there is a pair of non-isomorphic graphs that can be distinguished by 3-dim IM_p but not by k-dim WL^* .

For each k and distinct primes p and q, there is a pair of non-isomorphic graphs that can be distinguished by 3-dim IM_p but not by k-dim IM_q .

H. (2010)

k-dimensional IM $_p$ more generally

Consider the invertible-map algorithm for larger matrices (higher arity) and finite sets of primes.

Can we give instances where the general algorithm fails to express graph isomorphism?

Some open problems

For formula $\varphi(x,y)$, integer n and prime p, let $r_{\varphi}^p(n)$ denote the GF(p)-rank of the matrix defined by $\varphi(x,y)$ over an n-element set.

For formula $\varphi(x,y)$, integer n and prime p, let $r_{\varphi}^p(n)$ denote the GF(p)-rank of the matrix defined by $\varphi(x,y)$ over an n-element set.

Polynomial-rank conjecture

For each $\varphi(x, y)$ and each prime p, there are unary polynomials f_0 , ..., f_{p-1} such that $r_{\varphi}^p(n) = f_i(n)$ for all (sufficiently large) n congruent to i modulo p.

For formula $\varphi(x,y)$, integer n and prime p, let $r_{\varphi}^p(n)$ denote the GF(p)-rank of the matrix defined by $\varphi(x,y)$ over an n-element set.

Polynomial-rank conjecture

For each $\varphi(x, y)$ and each prime p, there are unary polynomials $f_0, ..., f_{p-1}$ such that $r_{\varphi}^p(n) = f_i(n)$ for all (sufficiently large) n congruent to i modulo p.

True for: (y_1, y_2) H. and Laubner (2010)

For formula $\varphi(x,y)$, integer n and prime p, let $r_{\varphi}^p(n)$ denote the GF(p)-rank of the matrix defined by $\varphi(x,y)$ over an n-element set.

Polynomial-rank conjecture

For each $\varphi(x, y)$ and each prime p, there are unary polynomials f_0 , ..., f_{p-1} such that $r_{\varphi}^p(n) = f_i(n)$ for all (sufficiently large) n congruent to i modulo p.

True for:

$$(y_1, y_2, y_2, ..., y_n)$$
 (x_1, x_2)

H. and Laubner (2010)

Kirsten (2012)

For formula $\varphi(x,y)$, integer n and prime p, let $r_{\varphi}^p(n)$ denote the GF(p)-rank of the matrix defined by $\varphi(x,y)$ over an n-element set.

Polynomial-rank conjecture

For each $\varphi(x, y)$ and each prime p, there are unary polynomials f_0 , ..., f_{p-1} such that $r_{\varphi}^p(n) = f_i(n)$ for all (sufficiently large) n congruent to i modulo p.

H. and Laubner (2010) Kirsten (2012)

Problem 2: Give capturing results for FPR on natural classes of graphs

Consider classes on which we know that FPC does *not* capture PTIME:

- graphs of bounded degree
- graphs of bounded colour-class size

Further questions

- Can FPR express matching in arbitrary graphs?
- Does the "simultaneous similarity game" correspond to a natural logic?

More open problems to come in the next talk!