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Background & motivation
Descriptive complexity of problems in linear algebra
Logics with matrix-rank operators

Pebble games for rank logics & the Weisfeiler-Lehman
method
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Fixed-point logic captures PTIME on
ordered structures

FP is first-order logic with an inflationary fixed-point
operator.

A property P of ordered structures can be decided in
PTIME if and only if P can be defined by a sentence of FP.

Immerman-Vardi (1982)

® On unordered structures, FP cannot even express if a
graph has an even or odd number of vertices.

® Fixed-point logic with counting (FPC) is FP together with
terms that count the number of solutions to formulas.
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Ck— first-order logic with variables xi, ..., xx and
counting quantifiers of the form 3=y 0

To show that a property P is not definable in FPC:

For each k, exhibit a pair of graphs Gx and Hx for which
® Gy has property P but Hy does not; and

e Duplicator wins the k-pebble game on Gi and Hx.
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Proving non-definability in FPC

Ck— first-order logic with variables xi, ..., xx and
counting quantifiers of the form 3=y 0

2. Ck-equivalence can be characterised by a k-pebble
bijection game (a variant of Ehrenfeucht—Fraisse)

Facts

e For each k, we can decide the winner of the k-pebble
game in polynomial time.

e (Close connection with a family of algorithms for graph
isomorphism: Weisfeiler-Lehman method.




Non-definability result for FPC

There is a polynomial-time decidable property of finite
graphs that is not definable in FPC.

Cai, Fiirer and Immerman (1992)




Non-definability result for FPC

There is a polynomial-time decidable property of finite
graphs that is not definable in FPC. “CFI property”

Cai, Fiirer and Immerman (1992)




Non-definability result for FPC

There is a polynomial-time decidable property of finite
graphs that is not definable in FPC. “CFI property”

Cai, Fiirer and Immerman (1992)

Corollary

FPC does not capture PTIME on




Non-definability result for FPC

There is a polynomial-time decidable property of finite
graphs that is not definable in FPC. “CFI property”

Cai, Fiirer and Immerman (1992)

Corollary

FPC does not capture PTIME on

e coraphs of bounded degree




Non-definability result for FPC

There is a polynomial-time decidable property of finite
graphs that is not definable in FPC. “CFI property”

Cai, Fiirer and Immerman (1992)

Corollary

FPC does not capture PTIME on

e coraphs of bounded degree (not even degree 3)




Non-definability result for FPC

There is a polynomial-time decidable property of finite
graphs that is not definable in FPC. “CFI property”

Cai, Fiirer and Immerman (1992)

Corollary

FPC does not capture PTIME on

e coraphs of bounded degree (not even degree 3)

e oraphs of bounded colour-class size




Non-definability result for FPC

There is a polynomial-time decidable property of finite
graphs that is not definable in FPC. “CFI property”

Cai, Fiirer and Immerman (1992)

Corollary

FPC does not capture PTIME on

e coraphs of bounded degree (not even degree 3)

° graphs of bounded colour-class size (not even size 4)




Non-definability result for FPC

There is a polynomial-time decidable property of finite
graphs that is not definable in FPPC. “CFI property”

Cai, Fiirer and Immerman (1992)

Corollary

FPC does not capture PTIME on

e coraphs of bounded degree (not even degree 3)

° graphs of bounded colour-class size (not even size 4)

Still, the CFI query is hardly a natural graph property...
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There is a polynomial-time decidable property of finite
graphs that is not definable in FPPC. “CFI property”

Cai, Fiirer and Immerman (1992)

Corollary

FPC does not capture PTIME on

e coraphs of bounded degree (not even degree 3)

° graphs of bounded colour-class size (not even size 4)

Still, the CFI query is hardly a natural graph property...

More recently: See which problems in linear algebra can
be expressed in FPC
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The usual notion of a matrix

A = (a;;) — anm-by-n rectangular array ot elements

{1 23 45 6 7 8 910,

A

O 00 NN O G & W N -

=
o
T ———

Recall: Over ordered structures FP
(and hence FPC) can define all
polynomial-time properties.

rows and | all PTIME matrix
columns TT~—> properties can be
ordered defined in FP

Many natural matrix properties invariant under
permutation of rows and columns

(rank, determinant, etc.)
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I, ] — finite and non-empty sets

D — a group, a ring or a field

A:IxJ—D  “anI-by-] matrix over D”
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As a relational structure over a fixed domain D:

& = (I,J;(Ad)aep, (ba)acp) where A; C T xJ and by C I

t

In this talk: FocusonI=]
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FPC — more non-definability results

Corollary

Solvability of systems of linear equations over any fixed
finite field is not definable in FPC.

Atserias, Bulatov and Dawar (2007)

Recall: A linear system Ax = b over a field k is solvable if
and only if the matrices A and (A | b) have the same rank
over k

Corollary
Matrix rank over finite fields is not definable in FPC.
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Which matrix properties can be
defined in FPC?

Characteristic polynomial and determinant of a
square matrix over Z, Q and any finite field.

The inverse to any invertible square matrix over Z, Q
and any finite field.

Rank of a matrix over Q.

Dawar, H., Grohe, Laubner (2009)

Minimal polynomial of a square matrix over Q and
any finite field.
H.-Pakusa (2010)

Fundamental linear-algebraic property over fields that
separates FPC from PTIME: rank over finite fields

(Next talk: solvability problems over groups and rings)




Next step: extend fixed-point logic
with ability to define matrix rank
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Definable matrix relations

Recall: View any A C [ x [ as a matrix over GF(2).

{1 if G = ¢fu, v, |

(u,v) = .
0 otherwise.

/

— >

formula & ($ ; y)

MG
graph G=(V, E) -

(over GF(2))

v

Example:  ¢(z,y) := E(z,y) ~ MS = adjacency matrix of G

More generally: formalise matrices over GF(p), p prime
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Fixed-point logic with rank operators

Variables are typed:

Il 2 3 4 5 6 7 . N @ G:(VIE)

number variables: vertex variables: range
range over N over the vertices V

- Bounded quantification over number sort

- Extend FP with rules for rank terms: rkp (x, y) (D (p prime)

Semantics:  (rk,(x, y).)C = rank(Mg) over GF(p)

——> Logics FPR,, FPR and similarly FOR,, FOR
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Expressive power of rank logics

For any prime p, FPR,, can express solvability of linear
equations over GF(p™) for any m. H. (2010)

I§

over GF(p™) equivalent system over GF(p)

Represent each element of GF(p™)
as an m-by-m matrix over GF(p)

(we can simulate counting by

Coroll ary ( expressing rank of diagonal matrices)

For any prime p, FPC ¢ FPR, € PTIME.
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CFI graphs revisited

Non-isomorphic CFI graphs can be distinguished by a

sentence of FOR.. Dawar, Grohe, H., Laubner (2009)

Recall: FPC does not capture PTIME on graphs of
bounded colour-class size —~—> noteven size 4

[somorphism of graphs of colour class size 4 can be
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Recall: Proofs of inexpressibility in FPC are generally
formulated using a game method.

Our wish list:

A pebble game for finite-variable rank logics for

which...

1. we can decide who wins the game in

polynomial time, and invertible-
> map game

} matrix-rank

game

)

. there is a corresponding “stable colouring
algorithm”, like for the counting game on

graphs.

/
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R’; — first-order logic with variables xi, ..., xx and rank
quantifiers of the form rk%"(a:, ) . ()

. Every formula of FPR, is invariant under R’; -
equivalence, for some k.

. R’Zj -equivalence can be characterised by a k-pebble
matrix-rank game (over GF(p))

G and H agree on all Duplicator has a winning
sentences of k-variable  iff strategy in the k-pebble matrix-
rank logic over GF(p) rank game on G and H
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Two tuples (A1, Ay, ..., Aw) and (By, By, ..., Bw) of n-by-n
matrices over a field k are simultaneously similar if there
is an invertible S such that S A; S'! = B; for all i.

There is a deterministic algorithm that, given two m-
tuples A and B of n-by-n matrices over a finite field GF(g),
determines in time poly(n, m, ) whether A and B are

sunultaneously similar. Chistov, Karpinsky and Ivanyov (1997)
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Game based on invertible linear maps

Invertible-map game on G and H over GF(p):

® Protocol based on partitioning each game board into
disjoint {0,1}-matrices (“partition matrices”).

New game rule: At each round, Duplicator has to
ensure that the two tuples of partition matrices (over G
and H) are simultaneously similar over GF(p).

Facts:
e We can decide who wins this game in PTIME.

® Refines R];—equivalence: [f Duplicator wins the k-
pebble invertible-map game on G and H then she also
wins the k-pebble matrix rank game on G and H.




Connection with stable colouring

Recall:

2. there is a corresponding “stable colouring
algorithm”, like for the counting game on

graphs.
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Weisfeiler-Lehman algorithm for GI

Input:  Graphs G = (Vg, Eg) and H = (Vg, En)

Output: “isomorphic” or “not isomorphic”

1. Compute the WL refinement =~ on GUH

2. Output “not isomorphic” if there is some o € GUH/ ~
such that [[a N Vg| # [laNVy|; else “isomorphic”.

Some facts:
1. WL runs in time O(n? log(n))
2. WL is correct almost surely Babai, Erdés and Selkow (1980)

3. WL fails on non-isomorphic regular graphs
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One-element extensions in G = (V, E)

For o C V¥, ak-tuple u & VE and 0 < ¢ < k let:

I;(u,a) ={w eV |u% € a}

Example: Letk=3 and o :={(z,y,2) € V3l (z,y,2) = A}

M ’ Uo(uvw, ) = {a, b}

, b ' (uvw, ) = ()
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k-dimensional WL refinement

Input:  Graph G =(V, E)

Output: Equivalence relation ~ on V.

Initial: 4 ~g ¥  iff atpg(d) = atpg (V)
Refine: % ~p4+1 U iff 4 ~,, U andforall 0 <i <k
there is a bijection f : V' — V s.t.

Ti(d,a) ={weV|@%eaty  f:T(d, ) — [i(7,a)

I

forall a € VF/ ~,,

Theorem: u = v iff they agree on all Ck-formulas in G.
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k-dimensional WL algorithm for GI

As before: compute k-dimensional WL refinement and
compare across the two graphs.

PTIME for fixed k: k-dim WL" runs in time O(n**1 log(n)).

There exists a sequence of pairs {(G, Hn)}» of non-
isomorphic graphs for which it holds that:

e G, and H, have O(n) vertices but

® G, and H, are not distinguished by the n-dim WL’
algorithm.

Cai, Fiirer and Immerman (1992)
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k-dimensional IM refinement over GF(p)

Input:  Graph G =(V, E)

Output: Equivalence relation ~ on V.

Initial: 4 ~g ¥  iff atpg(d) = atpg (V)
Refine: @ ~p41 U iff @ ~,, Uandforall 0 <7 # j <k
thereis S € GLy (GF(p)) s.t.

S - Fij(ﬁ, ()5) .S = Fij(ﬁ, cu)

forall a € VF/ ~,,
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k-dimensional IM,, algorithm for GI

Similar to WL: compute k-dimensional IM refinement and
compare across the two graphs (here over GF(p))

e For each k, k-dim IM, runs in polynomial time for all p.

e Refinement: k-dim WL™ D (k+1)-dim IM, D (k+2)-dim IM,,

For each k and prime p, there is a pair of non-isomorphic
graphs that can be distinguished by 3-dim IM, but not by

k-dim WL, Dawar and H. (2012)

For each k and distinct primes p and g, there is a pair of
non-isomorphic graphs that can be distinguished by 3-
dim IM,, but not by k-dim IM,. H. (2010)




k-dimensional IM, more generally

Consider the invertible-map algorithm for larger matrices
(higher arity) and finite sets of primes.

Can we give instances where the general algorithm fails
to express graph isomorphism?




Some open problems
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For formula ¢(,¥), integer n and prime p, let r(n)

denote the GF(p)-rank of the matrix defined by ¢(x, y)
over an n-element set.

Polynomial-rank conjecture

For each ¢(z,y) and each prime p, there are unary
polynomials fo, ..., fy-1such that r3(n) = f;(n) for all
(sufficiently large) n congruent to i modulo p.

(yll yzl y2/ ceey yn)

True for: |
(x1, x2) Kirsten (2012)




Problem 1: Separate FOR, and FOR,
over empty signatures

For formula ¢(,¥), integer n and prime p, let 7“5) (n)
denote the GF(p)-rank of the matrix defined by ¢(x, y)
over an n-element set.

Polynomial-rank conjecture

For each ¢(z,y) and each prime p, there are unary
polynomials fo, ..., fy-1such that r3(n) = f;(n) for all
(sufficiently large) n congruent to i modulo p.

(yll yzl y2/ ceey yn)




Problem 2: Give capturing results for
FPR on natural classes of graphs

Consider classes on which we know that FPC does not
capture PTIME:

® graphs of bounded degree

® graphs of bounded colour-class size




Further questions

e Can FPR express matching in arbitrary graphs?

® Does the “simultaneous similarity game” correspond
to a natural logic?

More open problems to come in the next talk!




