Descriptive complexity
of "linear algebra

Bjarki Holm

B UNIVERSITY OF
9P CAMBRIDGE

Logical Approaches to Barriers
in Computing & Complexity 11

Isaac Newton Institute
2012

Overview

Study definability of natural problems in linear algebra
and expressiveness of logics with algebraic operators.

Overview

Study definability of natural problems in linear algebra
and expressiveness of logics with algebraic operators.

Background & motivation
Descriptive complexity of problems in linear algebra
Logics with matrix-rank operators

Pebble games for rank logics & the Weisfeiler-Lehman
method

A logic for NP

ESO — Existential second-order logic

Second-order variables existentially quantified,
followed by a first-order formula:

ElRl,...,Rk.QO(Rl,...,Rk)

A logic for NP

A decision problem is in NP if and only if it can be

defined in ESO. |
Fagin (1974)

ESO — Existential second-order logic

Second-order variables existentially quantified,
followed by a first-order formula:

ElRl,...,Rk.go(Rl,...,Rk)

A logic for NP

A decision problem is in NP if and only if it can be

defined in ESO. |
Fagin (1974)

ESO — Existential second-order logic

Second-order variables existentially quantified,
followed by a first-order formula:

ElRl,...,Rk.QO(Rl,...,Rk)
~

llgueSSII

A logic for NP

A decision problem is in NP if and only if it can be

defined in ESO. |
Fagin (1974)

ESO — Existential second-order logic

Second-order variables existentially quantified,
followed by a first-order formula:

ElRl,...,Rk.QO(Rl,...,Rk)
A - —— 7

“euess” ”Verify”

A logic for NP

A decision problem is in NP if and only if it can be

defined in ESO. |
Fagin (1974)

ESO — Existential second-order logic

Second-order variables existentially quantified,
followed by a first-order formula:

ElRl,...,Rk.go(Rl,...,Rk)
A - —— 7

“euess” ”Verify”

[s there a logic for PTIME?

A logic tor PTIME?

Fixed-point logic captures PTIME on
ordered structures

FP is first-order logic with an inflationary fixed-point
operator.

A property P of ordered structures can be decided in
PTIME if and only if P can be defined by a sentence of FP.

Immerman-Vardi (1982)

Fixed-point logic captures PTIME on
ordered structures

FP is first-order logic with an inflationary fixed-point
operator.

A property P of ordered structures can be decided in
PTIME if and only if P can be defined by a sentence of FP.

Immerman-Vardi (1982)

Ordered structure: Vocabulary contains a binary symbol “<”
interpreted as a total ordering of the vertices.

Fixed-point logic captures PTIME on
ordered structures

FP is first-order logic with an inflationary fixed-point
operator.

A property P of ordered structures can be decided in
PTIME if and only if P can be defined by a sentence of FP.

Immerman-Vardi (1982)

Fixed-point logic captures PTIME on
ordered structures

FP is first-order logic with an inflationary fixed-point
operator.

A property P of ordered structures can be decided in
PTIME if and only if P can be defined by a sentence of FP.

Immerman-Vardi (1982)

® On unordered structures, FP cannot even express if a
graph has an even or odd number of vertices.

Fixed-point logic captures PTIME on
ordered structures

FP is first-order logic with an inflationary fixed-point
operator.

A property P of ordered structures can be decided in
PTIME if and only if P can be defined by a sentence of FP.

Immerman-Vardi (1982)

® On unordered structures, FP cannot even express if a
graph has an even or odd number of vertices.

® Fixed-point logic with counting (FPC) is FP together with
terms that count the number of solutions to formulas.

FPC captures PTIME on...

FPC captures PTIME on...

PTIME

Ordered structures—1982

FPC captures PTIME on...

Trees—1986

Ordered structures—1982

FPC captures PTIME on...

PTIME

Planar graphs—1998

Trees—1986

Ordered structures—1982

FPC captures PTIME on...

PTIME

Graphs of bounded
treewidth—1999

Planar graphs—1998

Trees—1986

Ordered structures—1982

FPC captures PTIME on...

PTIME

Minor-closed classes
of graphs—2010

Graphs of bounded
treewidth—1999

Planar graphs—1998

Trees—1986

Ordered structures—1982

FPC captures PTIME on...

PTIME

Minor-closed classes
of graphs—2010

Graphs of bounded
treewidth—1999

Planar graphs—1998

“Almost all” graphs—1996

Trees—1986

Ordered structures—1982

FPC captures PTIME on... all graphs?

PTIME

Minor-closed classes
of graphs—2010

Graphs of bounded
treewidth—1999

Planar graphs—1998

“Almost all” graphs—1996

Trees—1986

Ordered structures—1982

Proving non-definability in FPC

Ck— first-order logic with variables xi, ..., xx and
counting quantifiers of the form 3=y 0

Proving non-definability in FPC

Ck— first-order logic with variables xi, ..., xx and
counting quantifiers of the form 3=y 0

1. Every formula of FPC is invariant under C*-
equivalence, for some k.

Proving non-definability in FPC

Ck— first-order logic with variables xi, ..., xx and
counting quantifiers of the form 3=y 0

1. Every formula of FPC is invariant under C*-
equivalence, for some k.

2. Ck-equivalence can be characterised by a k-pebble
bijection game (a variant of Ehrenfeucht-Fraisse)

Proving non-definability in FPC

Ck— first-order logic with variables xi, ..., xx and
counting quantifiers of the form 3=y 0

. Every formula of FPC is invariant under C*-
equivalence, for some k.

. Ck-equivalence can be characterised by a k-pebble
bijection game (a variant of Ehrenfeucht-Fraisse)

Duplicator has a winning
iff strategy in the k-pebble
bijection game on G and H

G and H agree on all
sentences of Ck

Proving non-definability in FPC

Ck— first-order logic with variables xi, ..., xx and
counting quantifiers of the form 3=y 0

Proving non-definability in FPC

Ck— first-order logic with variables xi, ..., xx and
counting quantifiers of the form 3=y 0

To show that a property P is not definable in FPC:

Proving non-definability in FPC

Ck— first-order logic with variables xi, ..., xx and
counting quantifiers of the form 3=y 0

To show that a property P is not definable in FPC:
For each k, exhibit a pair of graphs Gx and Hx for which

Proving non-definability in FPC

Ck— first-order logic with variables xi, ..., xx and
counting quantifiers of the form 3=y 0

To show that a property P is not definable in FPC:
For each k, exhibit a pair of graphs Gx and Hx for which
® Gy has property P but Hy does not; and

Proving non-definability in FPC

Ck— first-order logic with variables xi, ..., xx and
counting quantifiers of the form 3=y 0

To show that a property P is not definable in FPC:

For each k, exhibit a pair of graphs Gx and Hx for which
® Gy has property P but Hy does not; and

e Duplicator wins the k-pebble game on Gi and Hx.

Proving non-definability in FPC

Ck— first-order logic with variables xi, ..., xx and
counting quantifiers of the form 3=y 0

2. Ck-equivalence can be characterised by a k-pebble
bijection game (a variant of Ehrenfeucht—Fraisse)

Proving non-definability in FPC

Ck— first-order logic with variables xi, ..., xx and
counting quantifiers of the form 3=y 0

2. Ck-equivalence can be characterised by a k-pebble
bijection game (a variant of Ehrenfeucht—Fraisse)

Facts

Proving non-definability in FPC

Ck— first-order logic with variables xi, ..., xx and
counting quantifiers of the form 3=y 0

2. Ck-equivalence can be characterised by a k-pebble
bijection game (a variant of Ehrenfeucht—Fraisse)

Facts

e For each k, we can decide the winner of the k-pebble
game in polynomial time.

Proving non-definability in FPC

Ck— first-order logic with variables xi, ..., xx and
counting quantifiers of the form 3=y 0

2. Ck-equivalence can be characterised by a k-pebble
bijection game (a variant of Ehrenfeucht—Fraisse)

Facts

e For each k, we can decide the winner of the k-pebble
game in polynomial time.

e (Close connection with a family of algorithms for graph
isomorphism: Weisfeiler-Lehman method.

Non-definability result for FPC

There is a polynomial-time decidable property of finite
graphs that is not definable in FPC.

Cai, Fiirer and Immerman (1992)

Non-definability result for FPC

There is a polynomial-time decidable property of finite
graphs that is not definable in FPC. “CFI property”

Cai, Fiirer and Immerman (1992)

Non-definability result for FPC

There is a polynomial-time decidable property of finite
graphs that is not definable in FPC. “CFI property”

Cai, Fiirer and Immerman (1992)

Corollary

FPC does not capture PTIME on

Non-definability result for FPC

There is a polynomial-time decidable property of finite
graphs that is not definable in FPC. “CFI property”

Cai, Fiirer and Immerman (1992)

Corollary

FPC does not capture PTIME on

e coraphs of bounded degree

Non-definability result for FPC

There is a polynomial-time decidable property of finite
graphs that is not definable in FPC. “CFI property”

Cai, Fiirer and Immerman (1992)

Corollary

FPC does not capture PTIME on

e coraphs of bounded degree (not even degree 3)

Non-definability result for FPC

There is a polynomial-time decidable property of finite
graphs that is not definable in FPC. “CFI property”

Cai, Fiirer and Immerman (1992)

Corollary

FPC does not capture PTIME on

e coraphs of bounded degree (not even degree 3)

e oraphs of bounded colour-class size

Non-definability result for FPC

There is a polynomial-time decidable property of finite
graphs that is not definable in FPC. “CFI property”

Cai, Fiirer and Immerman (1992)

Corollary

FPC does not capture PTIME on

e coraphs of bounded degree (not even degree 3)

° graphs of bounded colour-class size (not even size 4)

Non-definability result for FPC

There is a polynomial-time decidable property of finite
graphs that is not definable in FPPC. “CFI property”

Cai, Fiirer and Immerman (1992)

Corollary

FPC does not capture PTIME on

e coraphs of bounded degree (not even degree 3)

° graphs of bounded colour-class size (not even size 4)

Still, the CFI query is hardly a natural graph property...

Non-definability result for FPC

There is a polynomial-time decidable property of finite
graphs that is not definable in FPPC. “CFI property”

Cai, Fiirer and Immerman (1992)

Corollary

FPC does not capture PTIME on

e coraphs of bounded degree (not even degree 3)

° graphs of bounded colour-class size (not even size 4)

Still, the CFI query is hardly a natural graph property...

More recently: See which problems in linear algebra can
be expressed in FPC

Descriptive complexity of
problems in linear algebra

The usual notion of a matrix

A = (a;;) — anm-by-n rectangular array ot elements

1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

—
[e)

The usual notion of a matrix

—
[e)

1
2
3
4
5
6
7
8
9

A = (a;;) — anm-by-n rectangular array ot elements

1 2 3 4 5 6 7 8 9 10

Recall: Over ordered structures FP
(and hence FPC) can define all
polynomial-time properties.

The usual notion of a matrix
A = (a;;) — anm-by-n rectangular array ot elements

Recall: Over ordered structures FI
ot 7228 (and hence FPC) can define all
polynomial-time properties.

rows and all PTIME matrix
columns —TT~—> properties can be

ordered defined in FP

1
2
3
4
5
6
7
8
9

—
[e)

The usual notion of a matrix
A = (a;;) — anm-by-n rectangular array ot elements

Recall: Over ordered structures FI
ot 7228 (and hence FPC) can define all
polynomial-time properties.

rows and - all PTIME matrix
columns —TT~—> properties can be

ordered defined in FP

1
2
3
4
5
6
7
8
9

—
[e)

Many natural matrix properties invariant under
permutation of rows and columns

The usual notion of a matrix
A = (a;;) — anm-by-n rectangular array ot elements

— Recall: Over ordered structures FP
22272287 (and hence FPC) can define all
polynomial-time properties.

rows and - all PTIME matrix
columns —TT~—> properties can be

ordered defined in FP

1
2
3
4
5
6
7
8
9

—
[e)

Many natural matrix properties invariant under
permutation of rows and columns

The usual notion of a matrix

A = (a;;) — anm-by-n rectangular array ot elements

{1 23 45 6 7 8 910,

A

O 00 NN O G & W N -

=
o
T ————

Recall: Over ordered structures FP
(and hence FPC) can define all
polynomial-time properties.

rows and | all PTIME matrix
columns —TT~—> properties can be
ordered defined in FP

Many natural matrix properties invariant under
permutation of rows and columns

The usual notion of a matrix

A = (a;;) — anm-by-n rectangular array ot elements

{1 23 45 6 7 8 910,

A

O 00 NN O G & W N -

=
o
T ———

Recall: Over ordered structures FP
(and hence FPC) can define all
polynomial-time properties.

rows and | all PTIME matrix
columns TT~—> properties can be
ordered defined in FP

Many natural matrix properties invariant under
permutation of rows and columns

(rank, determinant, etc.)

Unordered matrices

I,] — finite and non-empty sets

D — a group, a ring or a field

Unordered matrices

I,] — finite and non-empty sets

D — a group, a ring or a field

Unordered matrices

I,] — finite and non-empty sets

D — a group, a ring or a field

A:IxJ—D “anI-by-] matrix over D”

Unordered systems of linear equations

I,] — finite and non-empty sets

D — a group, a ring or a field

Unordered systems of linear equations

I,] — finite and non-empty sets

D — a group, a ring or a field

Unordered systems of linear equations

Unordered systems of linear equations

As a relational structure over a fixed domain D:

Unordered systems of linear equations

As a relational structure over a fixed domain D:

& = (I,J;(Ad)aep, (ba)acp) where A; C T xJ and by C I

t

Unordered systems of linear equations

As a relational structure over a fixed domain D:

& = (I,J;(Ad)aep, (ba)acp) where A; C T xJ and by C I
Ao

t

Unordered systems of linear equations

As a relational structure over a fixed domain D:

& = (I,J;(Ad)aep, (ba)acp) where A; C T xJ and by C I

t

Unordered systems of linear equations

As a relational structure over a fixed domain D:

& = (I,J;(Ad)aep, (ba)acp) where A; C T xJ and by C I

t

Unordered systems of linear equations

As a relational structure over a fixed domain D:

& = (I,J;(Ad)aep, (ba)acp) where A; C T xJ and by C I

t

Unordered systems of linear equations

As a relational structure over a fixed domain D:

& = (I,J;(Ad)aep, (ba)acp) where A; C T xJ and by C I

t

In this talk: FocusonI=]

FPC — more non-definability results

Solvability of systems of linear equations over any fixed
finite Abelian group is not definable in FPC.

Atserias, Bulatov and Dawar (2007)

FPC — more non-definability results

Corollary

Solvability of systems of linear equations over any fixed
finite field is not definable in FPC.

Atserias, Bulatov and Dawar (2007)

FPC — more non-definability results

Corollary

Solvability of systems of linear equations over any fixed
finite field is not definable in FPC.

Atserias, Bulatov and Dawar (2007)

Recall: A linear system Ax = b over a field k is solvable if
and only if the matrices A and (A | b) have the same rank
over k

FPC — more non-definability results

Corollary

Solvability of systems of linear equations over any fixed
finite field is not definable in FPC.

Atserias, Bulatov and Dawar (2007)

Recall: A linear system Ax = b over a field k is solvable if
and only if the matrices A and (A | b) have the same rank
over k

Corollary
Matrix rank over finite fields is not definable in FPC.

Which matrix properties can be
defined in FPC?

Which matrix properties can be
defined in FPC?

haracteristic polynomial and determinant of a
juare matrix over Z, Q and any finite field.

Dawar, H., Grohe, Laubner (2009)

Which matrix properties can be
defined in FPC?

Characteristic polynomial and determinant of a
square matrix over Z, Q and any finite field.

The inverse to any invertible square matrix over Z, Q
and any finite field.

Dawar, H., Grohe, Laubner (2009)

Which matrix properties can be
defined in FPC?

Characteristic polynomial and determinant of a
square matrix over Z, Q and any finite field.

The inverse to any invertible square matrix over Z, Q
and any finite field.

Rank of a matrix over Q.

Dawar, H., Grohe, Laubner (2009)

Which matrix properties can be
defined in FPC?

Characteristic polynomial and determinant of a
square matrix over Z, Q and any finite field.

The inverse to any invertible square matrix over Z, Q
and any finite field.

Rank of a matrix over Q.

Dawar, H., Grohe, Laubner (2009)

Minimal polynomial of a square matrix over Q and
any finite field.
H.-Pakusa (2010)

Which matrix properties can be
defined in FPC?

Characteristic polynomial and determinant of a
square matrix over Z, Q and any finite field.

The inverse to any invertible square matrix over Z, Q
and any finite field.

Rank of a matrix over Q.

Dawar, H., Grohe, Laubner (2009)

Minimal polynomial of a square matrix over Q and
any finite field.
H.-Pakusa (2010)

Fundamental linear-algebraic property over fields that
separates FPC from PTIME: rank over finite fields

Which matrix properties can be
defined in FPC?

Characteristic polynomial and determinant of a
square matrix over Z, Q and any finite field.

The inverse to any invertible square matrix over Z, Q
and any finite field.

Rank of a matrix over Q.

Dawar, H., Grohe, Laubner (2009)

Minimal polynomial of a square matrix over Q and
any finite field.
H.-Pakusa (2010)

Fundamental linear-algebraic property over fields that
separates FPC from PTIME: rank over finite fields

(Next talk: solvability problems over groups and rings)

Next step: extend fixed-point logic
with ability to define matrix rank

Definable matrix relations

Recall: View any A C [x [as a matrix over GF(2).

Definable matrix relations

Recall: View any A C [x [as a matrix over GF(2).

formula 90($; y)
graph G =(V, E)

Definable matrix relations

Recall: View any A C [x [as a matrix over GF(2).

formula & ($; y)

MG
graph G=(V, E) -

(over GF(2))

Definable matrix relations

Recall: View any A C [x [as a matrix over GF(2).

formula & ($; y)

MG
graph G=(V, E) -

(over GF(2))

Definable matrix relations

Recall: View any A C [x [as a matrix over GF(2).

1 i G E=oplu,vl), |

otherwise.

formula & ($; y)

MG
graph G=(V, E) -

(over GF(2))

Definable matrix relations

Recall: View any A C [x [as a matrix over GF(2).

1 i G E=oplu,vl), |

otherwise.

formula & ($; y)

MG
graph G=(V, E) -

(over GF(2))

v

Example: ¢(z,y) := E(z,y) ~ MS = adjacency matrix of G

Definable matrix relations

Recall: View any A C [x [as a matrix over GF(2).

{1 if G = ¢fu, v, |

(u,v) = .
0 otherwise.

/

— >

formula & ($; y)

MG
graph G=(V, E) -

(over GF(2))

v

Example: ¢(z,y) := E(z,y) ~ MS = adjacency matrix of G

More generally: formalise matrices over GF(p), p prime

Fixed-point logic with rank operators

Variables are typed:

Fixed-point logic with rank operators

Variables are typed:

vertex variables: range
over the vertices V

Fixed-point logic with rank operators

Variables are typed:

Il 2 3 4 5 6 7 . N @ G:(VIE)

number variables: vertex variables: range
range over N over the vertices V

Fixed-point logic with rank operators

Variables are typed:

| 5 6 7 . N @ G:(VIE)

number variables: vertex variables: range
range over N over the vertices V

- Bounded quantification over number sort

Fixed-point logic with rank operators

Variables are typed:

| 5 6 7 . N @ G:(VIE)

number variables: vertex variables: range
range over N over the vertices V

- Bounded quantification over number sort

- Extend FP with rules for rank terms: rkp (a;‘, y) (D (p prime)

Fixed-point logic with rank operators

Variables are typed:

Il 2 3 4 5 6 7 . N @ G:(VIE)

number variables: vertex variables: range
range over N over the vertices V

- Bounded quantification over number sort

- Extend FP with rules for rank terms: rkp (a;‘, y) (D (p prime)

Semantics: (rk,(x, y).)C = rank(Mg) over GF(p)

Fixed-point logic with rank operators

Variables are typed:

Il 2 3 4 5 6 7 . N @ G:(VIE)

number variables: vertex variables: range
range over N over the vertices V

- Bounded quantification over number sort

- Extend FP with rules for rank terms: rkp (x, y) (D (p prime)

Semantics: (rk,(x, y).)C = rank(Mg) over GF(p)

——> Logics FPR,, FPR and similarly FOR,, FOR

Expressive power of rank logics

For any prime p, FPR,, can express solvability of linear

equatlons OVET GF(}O) Dawar, Grohe, H., Laubner (2009)

Expressive power of rank logics

For any prime p, FPR,, can express solvability of linear
equations over GF(p™) for any m. H. (2010)

Expressive power of rank logics

For any prime p, FPR,, can express solvability of linear
equations over GF(p™) for any m. H. (2010)

Expressive power of rank logics

For any prime p, FPR,, can express solvability of linear
equations over GF(p™) for any m. H. (2010)

I

over GF(p™)

Represent each element of GF(p™)
as an m-by-m matrix over GF(p)

Expressive power of rank logics

For any prime p, FPR,, can express solvability of linear
equations over GF(p™) for any m. H. (2010)

I§

over GF(p™) equivalent system over GF(p)

Represent each element of GF(p™)
as an m-by-m matrix over GF(p)

Expressive power of rank logics

For any prime p, FPR,, can express solvability of linear
equations over GF(p™) for any m. H. (2010)

I§

over GF(p™) equivalent system over GF(p)

Represent each element of GF(p™)
as an m-by-m matrix over GF(p)

Corollary
For any prime p, FPC ¢ FPR, € PTIME.

Expressive power of rank logics

For any prime p, FPR,, can express solvability of linear
equations over GF(p™) for any m. H. (2010)

I§

over GF(p™) equivalent system over GF(p)

Represent each element of GF(p™)
as an m-by-m matrix over GF(p)

(we can simulate counting by

Coroll ary (expressing rank of diagonal matrices)

For any prime p, FPC ¢ FPR, € PTIME.

CFI graphs revisited

Non-isomorphic CFI graphs can be distinguished by a
sentence of FOR:. Dawar, Grohe, H., Laubner (2009)

CFI graphs revisited

Non-isomorphic CFI graphs can be distinguished by a

sentence of FOR.. Dawar, Grohe, H., Laubner (2009)

Recall: FPC does not capture PTIME on graphs of
bounded colour-class size —~—> noteven size 4

CFI graphs revisited

Non-isomorphic CFI graphs can be distinguished by a

sentence of FOR.. Dawar, Grohe, H., Laubner (2009)

Recall: FPC does not capture PTIME on graphs of
bounded colour-class size —~—> noteven size 4

[somorphism of graphs of colour class size 4 can be

Pebble games for rank logics &
the Weisfeiler-Lehman method

Proving non-definability in FPR,

Recall: Proofs of inexpressibility in FPC are generally
formulated using a game method.

Proving non-definability in FPR,

Recall: Proofs of inexpressibility in FPC are generally
formulated using a game method.

Our wish list:

Proving non-definability in FPR,

Recall: Proofs of inexpressibility in FPC are generally
formulated using a game method.

Our wish list:

A pebble game for finite-variable rank logics for

which...

Proving non-definability in FPR,

Recall: Proofs of inexpressibility in FPC are generally
formulated using a game method.

Our wish list:

A pebble game for finite-variable rank logics for

which...

1. we can decide who wins the game in
polynomial time, and

Proving non-definability in FPR,

Recall: Proofs of inexpressibility in FPC are generally
formulated using a game method.

Our wish list:

A pebble game for finite-variable rank logics for

which...

1. we can decide who wins the game in
polynomial time, and

. there is a corresponding “stable colouring
algorithm”, like for the counting game on

graphs.

Proving non-definability in FPR,

Recall: Proofs of inexpressibility in FPC are generally
formulated using a game method.

Our wish list:

A pebble game for finite-variable rank logics for

which...

1. we can decide who wins the game in
polynomial time, and

} matrix-rank

game

. there is a corresponding “stable colouring
algorithm”, like for the counting game on

graphs.

Proving non-definability in FPR,

Recall: Proofs of inexpressibility in FPC are generally
formulated using a game method.

Our wish list:

A pebble game for finite-variable rank logics for

which...

1. we can decide who wins the game in

polynomial time, and invertible-
> map game

} matrix-rank

game

)

. there is a corresponding “stable colouring
algorithm”, like for the counting game on

graphs.

/

Proving non-definability in FPR,

R’; — first-order logic with variables xi, ..., xx and rank
quantifiers of the form rk%z(x,) . ()

Proving non-definability in FPR,

R’; — first-order logic with variables xi, ..., xx and rank
quantifiers of the form rk%z(x, Y) . ()

1. Every formula of FPRy is invariant under R’; -
equivalence, for some k.

Proving non-definability in FPR,

R’; — first-order logic with variables xi, ..., xx and rank
quantifiers of the form rk%z(x,) . ()

. Every formula of FPR, is invariant under R’; -
equivalence, for some k.

. R’; -equivalence can be characterised by a k-pebble
matrix-rank game (over GF(p))

Proving non-definability in FPR,

R’; — first-order logic with variables xi, ..., xx and rank
quantifiers of the form rk%"(a:,) . ()

. Every formula of FPR, is invariant under R’; -
equivalence, for some k.

. R’Zj -equivalence can be characterised by a k-pebble
matrix-rank game (over GF(p))

G and H agree on all Duplicator has a winning
sentences of k-variable iff strategy in the k-pebble matrix-
rank logic over GF(p) rank game on G and H

Matrix-rank game over GF(p)

Matrix-rank game over GF(p)

Game played on finite graphs G and H

Matrix-rank game over GF(p)

Game played on finite graphs G and H

® Protocol based on partitioning each game board
into disjoint {0,1}-matrices (“partition matrices”).

Matrix-rank game over GF(p)

Game played on finite graphs G and H

® Protocol based on partitioning each game board
into disjoint {0,1}-matrices (“partition matrices”).

e Algebraic game rules: At each round, Duplicator
has to ensure that every linear combination of
partition matrices over G has the same GF(p)-rank
as the corresponding linear combination over H.

Matrix-rank game over GF(p)

Problem: Not known if we can decide in polynomial time
which player wins the game.

Game played on finite graphs G and H

e Protocol based on partitioning each game board
into disjoint {0,1}-matrices (“partition matrices”).

e Algebraic game rules: At each round, Duplicator
has to ensure that every linear combination of
partition matrices over G has the same GF(p)-rank
as the corresponding linear combination over H.

Matrix-rank game over GF(p)

Problem: Not known if we can decide in polynomial time
which player wins the game. -

Game played on finite graphs G an\d H

® Protocol based on partitioning ech game board
into disjoint {0,1}-matrices (“partition matrices”).

e Algebraic game rules: At each rosind, Duplicator
has to ensure that every linear combination of
partition matrices over G has the same GF(p)-rank
as the corresponding linear combination over H.

Strengthening the game rules

Two tuples (A1, Ay, ..., Aw) and (By, By, ..., Bw) of n-by-n
matrices over a field k are simultaneously similar if there
is an invertible S such that S A; S'! = B; for all i.

Strengthening the game rules

Two tuples (A1, Ay, ..., Aw) and (By, By, ..., Bw) of n-by-n
matrices over a field k are simultaneously similar if there
is an invertible S such that S A; S'! = B; for all i.

There is a deterministic algorithm that, given two m-
tuples A and B of n-by-n matrices over a finite field GF(g),
determines in time poly(n, m,) whether A and B are

sunultaneously similar. Chistov, Karpinsky and Ivanyov (1997)

Game based on invertible linear maps

Invertible-map game on G and H over GF(p):

® Protocol based on partitioning each game board into
disjoint {0,1}-matrices (“partition matrices”).

Game based on invertible linear maps

Invertible-map game on G and H over GF(p):

Protocol based on partitioning each game board into
disjoint {0,1}-matrices (“partition matrices”).

New game rule: At each round, Duplicator has to

ensure that the two tuples of partition matrices (over G
and H) are simultaneously similar over GF(p).

Game based on invertible linear maps

Invertible-map game on G and H over GF(p):

® Protocol based on partitioning each game board into
disjoint {0,1}-matrices (“partition matrices”).

New game rule: At each round, Duplicator has to
ensure that the two tuples of partition matrices (over G
and H) are simultaneously similar over GF(p).

Facts:

Game based on invertible linear maps

Invertible-map game on G and H over GF(p):

® Protocol based on partitioning each game board into
disjoint {0,1}-matrices (“partition matrices”).

New game rule: At each round, Duplicator has to
ensure that the two tuples of partition matrices (over G
and H) are simultaneously similar over GF(p).

Facts:

e We can decide who wins this game in PTIME.

Game based on invertible linear maps

Invertible-map game on G and H over GF(p):

® Protocol based on partitioning each game board into
disjoint {0,1}-matrices (“partition matrices”).

New game rule: At each round, Duplicator has to
ensure that the two tuples of partition matrices (over G
and H) are simultaneously similar over GF(p).

Facts:
e We can decide who wins this game in PTIME.

® Refines R];—equivalence: [f Duplicator wins the k-
pebble invertible-map game on G and H then she also
wins the k-pebble matrix rank game on G and H.

Connection with stable colouring

Recall:

2. there is a corresponding “stable colouring
algorithm”, like for the counting game on

graphs.

Weisfeiler-Lehman refinement

Input: Graph G =(V, E)

Output: Equivalence relation ~ on V.

Weisfeiler-Lehman refinement ~<0'ou refinement

or “stable colouring”

Input: Graph G =(V, E)

Output: Equivalence relation ~ on V.

Weisfeiler-Lehman refinement ~<0'ou refinement

or “stable colouring”

Input: Graph G =(V, E)

Output: Equivalence relation ~ on V.

Inductively define: ~g 2 ~1 2 ...

Weisfeiler-Lehman refinement ~<0'ou refinement

or “stable colouring”

Input: Graph G =(V, E)

Output: Equivalence relation ~ on V.

Inductively define: ~g 2 ~1 2 ...

Initial: w~ov iff deg(u) = deg(v)

Weisfeiler-Lehman refinement ~<0'ou refinement

or “stable colouring”

Input: Graph G =(V, E)

Output: Equivalence relation ~ on V.

Inductively define: ~g 2 ~1 2 ...

Initial: w~ov iff deg(u) = deg(v)

Weisfeiler-Lehman refinement <olowr refinement”

or “stable colouring’

Input: Graph G =(V, E)

Output: Equivalence relation ~ on V.

Inductively define: ~g 2 ~1 2 ...

Initial: w~ov iff deg(u) = deg(v)

Refine: © ~;11 v iff w~; vV andforall ae€V/ ~;:

IN(u) naf = [[N(v) Naf

Weisfeiler-Lehman refinement ~<0'ou refinement

or “stable colouring”

Input: Graph G =(V, E)

Output: Equivalence relation ~ on V.

Inductively define: ~g 2 ~1 2 ...

Initial: w~ov iff deg(u) = deg(v)

Refine: © ~;11 v iff w~; vV andforall ae€V/ ~;:

IN(u) naf = [[N(v) Naf

= {w| deg(w) =2)

Weisfeiler-Lehman refinement ~<0'ou refinement

or “stable colouring”

Input: Graph G =(V, E)

Output: Equivalence relation ~ on V.

Inductively define: ~g 2 ~1 2 ...

Initial: w~ov iff deg(u) = deg(v)

Refine: © ~;11 v iff w~; vV andforall ae€V/ ~;:

IN(u) naf = [[N(v) Naf

= {w| deg(w) =2)

Weisfeiler-Lehman algorithm for GI

Input: Graphs G = (Vg, Eg) and H = (Vg, En)

Output: “isomorphic” or “not isomorphic”

Weisfeiler-Lehman algorithm for GI

[nput: Graphs G = (Vg, Eg) and H = (VHy, En)

Output: “isomorphic” or “not isomorphic”

1. Compute the WL refinement =~ on GUH

2. Output “not isomorphic” if there is some o € GUH/ ~
such that [[a N Vg| # [laNVy|; else “isomorphic”.

Weisfeiler-Lehman algorithm for GI

Input: Graphs G = (Vg, Eg) and H = (Vg, En)

Output: “isomorphic” or “not isomorphic”

1. Compute the WL refinement =~ on GUH

2. Output “not isomorphic” if there is some o € GUH/ ~
such that [[a N Vg| # [laNVy|; else “isomorphic”.

Some facts:

Weisfeiler-Lehman algorithm for GI

Input: Graphs G = (Vg, Eg) and H = (Vg, En)

Output: “isomorphic” or “not isomorphic”

1. Compute the WL refinement =~ on GUH

2. Output “not isomorphic” if there is some o € GUH/ ~
such that [[a N Vg| # [laNVy|; else “isomorphic”.

Some facts:

1. WL runs in time O(n? log(n))

Weisfeiler-Lehman algorithm for GI

Input: Graphs G = (Vg, Eg) and H = (Vg, En)

Output: “isomorphic” or “not isomorphic”

1. Compute the WL refinement =~ on GUH

2. Output “not isomorphic” if there is some o € GUH/ ~
such that [[a N Vg| # [laNVy|; else “isomorphic”.

Some facts:
1. WL runs in time O(n? log(n))

2. WL is correct almost surely Babai, Erdés and Selkow (1980)

Weisfeiler-Lehman algorithm for GI

Input: Graphs G = (Vg, Eg) and H = (Vg, En)

Output: “isomorphic” or “not isomorphic”

1. Compute the WL refinement =~ on GUH

2. Output “not isomorphic” if there is some o € GUH/ ~
such that [[a N Vg| # [laNVy|; else “isomorphic”.

Some facts:
1. WL runs in time O(n? log(n))
2. WL is correct almost surely Babai, Erdés and Selkow (1980)

3. WL fails on non-isomorphic regular graphs

k-dimensional WL refinement

One-element extensions in G = (V, E)

For o C V¥, ak-tuple u & VE and 0 < ¢ < k let:

I;(u,a) ={w eV |u% € a}

k-dimensional WL refinement

One-element extensions in G = (V, E)

For o C V¥, ak-tuple u & VE and 0 < ¢ < k let:

I;(u,a) ={w eV |u% € a}

Example: Letk=3 and o :={(z,y,2) € V3l (z,y,2) = A}

k-dimensional WL refinement

One-element extensions in G = (V, E)

For o C V¥, ak-tuple u & VE and 0 < ¢ < k let:

I;(u,a) ={w eV |u% € a}

Example: Letk=3 and o :={(z,y,2) € V3l (z,y,2) = A}

M ’ Uo(uvw,) = {a, b}

, b ' (uvw,) = ()

k-dimensional WL refinement

Input: Graph G =(V, E)

Output: Equivalence relation ~ on V.

k-dimensional WL refinement

Input: Graph G =(V, E)

Output: Equivalence relation ~ on V.

Initial: 4 ~g ¥ iff atpg(d) = atpg (V)

k-dimensional WL refinement

Input: Graph G =(V, E)

Output: Equivalence relation ~ on V.

Initial: 4 ~g ¥ iff atpg(d) = atpg (V)
Refine: % ~p4+1 U iff 4 ~,, U andforall 0 <i <k
there is a bijection f : V' — V s.t.

f:Ti(u,a) — T'i(7, a)

forall a € VF/ ~,,

k-dimensional WL refinement

Input: Graph G =(V, E)

Output: Equivalence relation ~ on V.

Initial: 4 ~g ¥ iff atpg(d) = atpg (V)
Refine: % ~p4+1 U iff 4 ~,, U andforall 0 <i <k
there is a bijection f : V' — V s.t.

Ti(d,a) ={weV|@%eaty f:T(d,) — [i(7,a)

I

forall a € VF/ ~,,

k-dimensional WL refinement

Input: Graph G =(V, E)

Output: Equivalence relation ~ on V.

Initial: 4 ~g ¥ iff atpg(d) = atpg (V)
Refine: % ~p4+1 U iff 4 ~,, U andforall 0 <i <k
there is a bijection f : V' — V s.t.

Ti(d,a) ={weV|@%eaty f:T(d,) — [i(7,a)

I

forall a € VF/ ~,,

Theorem: u = v iff they agree on all Ck-formulas in G.

k-dimensional WL algorithm for GI

As before: compute k-dimensional WL refinement and
compare across the two graphs.

PTIME for fixed k: k-dim WL" runs in time O(n**1 log(n)).

k-dimensional WL algorithm for GI

As before: compute k-dimensional WL refinement and
compare across the two graphs.

PTIME for fixed k: k-dim WL" runs in time O(n**1 log(n)).

There exists a sequence of pairs {(G, Hn)}» of non-
isomorphic graphs for which it holds that:

e G, and H, have O(n) vertices but

® G, and H, are not distinguished by the n-dim WL’
algorithm.

Cai, Fiirer and Immerman (1992)

Refinement by invertible linear maps

Two-element extensions in G = (V, E)

For o C V¥, ak-tuple u & VE and 0<1+#£75 <k, let:

[(4,) == {(a, b)eV><V|ﬁ996a}CV><V

Refinement by invertible linear maps

Two-element extensions in G = (V, E)

For o C V¥, ak-tuple u & VE and 0<1+#£75 <k, let:

Fw(u) —{(CL b)EVXV|ﬁQQEO£}CVXV <~ {0,1}-matrix

Refinement by invertible linear maps

Two-element extensions in G = (V, E)

For o C V¥, ak-tuple u & VE and 0<1+#£75 <k, let:

Fw(u) —{(CL b)EVXV|ﬁQQEa}CVXV <~ {0,1}-matrix

Example: Letk=3and a:= {(z,y,2) € V? | (z,y,2) = A}

Refinement by invertible linear maps

Two-element extensions in G = (V, E)

For o C V¥, ak-tuple u & VE and 0<1+#£75 <k, let:

Fw(u) —{(CL b)EVXV|ﬁQQEO£}CVXV <~ {0,1}-matrix

Example: Letk=3and a:= {(z,y,2) € V? | (z,y,2) = A}

k-dimensional IM refinement over GF(p)

Input: Graph G =(V, E)

Output: Equivalence relation ~ on V.

k-dimensional IM refinement over GF(p)

Input: Graph G =(V, E)

Output: Equivalence relation ~ on V.

—

Initial: 4 ~g ¥ iff atpg(d) = atpg (V)

k-dimensional IM refinement over GF(p)

Input: Graph G =(V, E)

Output: Equivalence relation ~ on V.

Initial: 4 ~g ¥ iff atpg(d) = atpg (V)
Refine: @ ~p41 U iff @ ~,, Uandforall 0 <7 # j <k
thereis S € GLy (GF(p)) s.t.

S - Fij(ﬁ, ()5) .S = Fij(ﬁ, cu)

forall a € VF/ ~,,

k-dimensional IM,, algorithm for GI

Similar to WL: compute k-dimensional IM refinement and
compare across the two graphs (here over GF(p))

k-dimensional IM,, algorithm for GI

Similar to WL: compute k-dimensional IM refinement and
compare across the two graphs (here over GF(p))

e For each k, k-dim IM, runs in polynomial time for all p.

e Refinement: k-dim WL™ D (k+1)-dim IM, D (k+2)-dim IM,,

k-dimensional IM,, algorithm for GI

Similar to WL: compute k-dimensional IM refinement and
compare across the two graphs (here over GF(p))

e For each k, k-dim IM, runs in polynomial time for all p.

e Refinement: k-dim WL™ D (k+1)-dim IM, D (k+2)-dim IM,,

For each k and prime p, there is a pair of non-isomorphic
graphs that can be distinguished by 3-dim IM, but not by

k-dim WL, Dawar and H. (2012)

k-dimensional IM,, algorithm for GI

Similar to WL: compute k-dimensional IM refinement and
compare across the two graphs (here over GF(p))

e For each k, k-dim IM, runs in polynomial time for all p.

e Refinement: k-dim WL™ D (k+1)-dim IM, D (k+2)-dim IM,,

For each k and prime p, there is a pair of non-isomorphic
graphs that can be distinguished by 3-dim IM, but not by

k-dim WL, Dawar and H. (2012)

For each k and distinct primes p and g, there is a pair of
non-isomorphic graphs that can be distinguished by 3-
dim IM,, but not by k-dim IM,. H. (2010)

k-dimensional IM, more generally

Consider the invertible-map algorithm for larger matrices
(higher arity) and finite sets of primes.

Can we give instances where the general algorithm fails
to express graph isomorphism?

Some open problems

Problem 1: Separate FOR, and FOR,
over empty signatures

For formula ¢(,¥), integer n and prime p, let 7“5) (n)
denote the GF(p)-rank of the matrix defined by ¢(x, y)
over an n-element set.

Problem 1: Separate FOR, and FOR,
over empty signatures

For formula ¢(,¥), integer n and prime p, let 7“5) (n)
denote the GF(p)-rank of the matrix defined by ¢(x, y)
over an n-element set.

Polynomial-rank conjecture

For each ¢(z,y) and each prime p, there are unary
polynomials fo, ..., fy-1such that r3(n) = f;(n) for all
(sufficiently large) n congruent to i modulo p.

Problem 1: Separate FOR, and FOR,
over empty signatures

For formula ¢(,¥), integer n and prime p, let 7“5) (n)
denote the GF(p)-rank of the matrix defined by ¢(x, y)
over an n-element set.

Polynomial-rank conjecture

For each ¢(z,y) and each prime p, there are unary
polynomials fo, ..., fy-1such that r3(n) = f;(n) for all
(sufficiently large) n congruent to i modulo p.

(Y1, y2) H. and Laubner (2010)

True for:
(x1, x2)

Problem 1: Separate FOR, and FOR,
over empty signatures

For formula ¢(,¥), integer n and prime p, let r(n)

denote the GF(p)-rank of the matrix defined by ¢(x, y)
over an n-element set.

Polynomial-rank conjecture

For each ¢(z,y) and each prime p, there are unary
polynomials fo, ..., fy-1such that r3(n) = f;(n) for all
(sufficiently large) n congruent to i modulo p.

(yll yzl y2/ ceey yn)

True for: |
(x1, x2) Kirsten (2012)

Problem 1: Separate FOR, and FOR,
over empty signatures

For formula ¢(,¥), integer n and prime p, let 7“5) (n)
denote the GF(p)-rank of the matrix defined by ¢(x, y)
over an n-element set.

Polynomial-rank conjecture

For each ¢(z,y) and each prime p, there are unary
polynomials fo, ..., fy-1such that r3(n) = f;(n) for all
(sufficiently large) n congruent to i modulo p.

(yll yzl y2/ ceey yn)

Problem 2: Give capturing results for
FPR on natural classes of graphs

Consider classes on which we know that FPC does not
capture PTIME:

® graphs of bounded degree

® graphs of bounded colour-class size

Further questions

e Can FPR express matching in arbitrary graphs?

® Does the “simultaneous similarity game” correspond
to a natural logic?

More open problems to come in the next talk!

